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Midterm Exam
Math 332, Fall 2016, Geoffrey Scott

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

Instructions:

• Put your name and student number on this page.

• You have 110 minutes to complete the exam. I will write the remaining time on the
blackboard.

• You may ask me questions, but I cannot answer math questions or questions like “have I
shown enough work?”

• I will give partial credit for some questions, so show your work.

• You may use the back of the pages as scratch paper. If you need to use the back of the
pages to write your answer, make sure you write “SEE BACK OF PAGE” so that the
grader knows where to look.

• You may leave early. Put your completed exam on the front table and have a nice evening.

Grades:

Question 1: (out of 10)

Question 2: (out of 10)

Question 3: (out of 20)

Question 4: (out of 6)

Question 5: (out of 6)

Question 6: (out of 10)

Total: (out of 62)



Confusing Notation

Walk: A walk in a graph is a sequence of the form v0e1v1e2v2 . . . envn, where
the vi are vertices and the ei are edges, such that the endpoints of ei are
vi−1 and vi. A walk is closed if v0 = vn.

Trail: A trail is a walk in which no edge occurs more than once.

Path: A path is a trail in which no vertex occurs more than once, except that
v0 may equal vn.

Circuit: A circuit is a closed trail.

Cycle: A cycle is a closed path.



1. Algorithms

a. Suppose you apply Dijkstra’s algorithm to the graph below using the vertex labelled s as
your “start” vertex. Draw the first four edges that get added to your subgraph in the box
labelled ANSWER, using the vertices provided. There is a step in Dijkstra’s algorithm
where you might need to make an arbitrary choice between which edge to add, resulting
in multiple valid answers. If this happens, any valid answer will be given full credit. (5
points)
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ANSWER

Scoring: 5 points total for a correct answer. 2 points if you drew the entire spanning tree
instead of just the first 4 edges. 0 points for all other answers.

b. Write the Prüfer code for the tree shown below in the box labelled ANSWER. (5 points)
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67 (3, 1, 3, 3, 7)

ANSWER

Scoring: 5 points total for a correct answer. 1 point if it is ANY other 5-digit sequence of
the numbers 1 through 7. 0 points otherwise



2. Proofs from Class

a. Prove that every tree with at least one vertex has exactly |V (G)| − 1 edges. If you need it,
you may use the fact that every tree with ≥ 2 vertices has at least two leaves, and that
every tournament has a Hamiltonian path. (6 points)

Use induction on |V (G)|.

Base case |V (G)| = 1: A tree with one vertex cannot have an edge, since that edge
would be a loop and G would therefore have a cycle. This means that if |V (G)| = 1,
then |E(G)| = 0, as desired.

Inductive step: Assume the formula is true for all trees with n vertices where n ≥ 1,
and let v ∈ V (G) be a leaf of a tree G with n + 1 vertices (here, we are using the
fact that n+ 1 ≥ 2). Because v is a leaf, G− v is still a connected and acyclic graph,
hence still a tree. By the inductive hypothesis |E(G− v)| = |V (G− v)| − 1. Because
G has one more vertex and one more edge than G− v, |E(G)| = |V (G)| − 1.

Scoring: 1 point for using induction on the size of the graph. 2 points for the base case. 3
points for the inductive step. For the base case and inductive step, points will be assigned
according to the quality/correctness of that part of the proof. If you proved it some
completely different way, it will be marked using the marking scheme from question 4.

b. State, but do not prove, Hall’s theorem. Be precise, as though you were writing a textbook!
If you the phrase “Hall’s condition,” state what this is. (4 points)

Let G be a bipartite graph with bipartition V (G) = A t B. There is a matching of A if
and only if |N(S)| ≥ |S| for all S ⊆ A.

Scoring: 4 points total for a correct statement, 2 points total for an almost-correct state-
ment (e.g. saying “if” instead of ‘if and only if”). 0-1 points for more critical mistakes
(e.g. forgetting the word “bipartite”)



3. Short Answer

Give an example of the following objects, or give a short (one or two sentences should suffice)
explanation why no example exists.

a. A simple connected graph with 7 vertices and 6 edges that contains an odd number of
distinct cycles. For this problem, two cycles are counted as being “the same” if they use
the same set of vertices. (4 points)

Does not exist: Any simple graph satisfying |E(G)| = |V (G)| − 1 will be a tree, and
therefore, have zero cycles.
Scoring: +2 points for getting “impossible”, +2 points for a good reason

b. A simple connected graph G with ≥ 3 vertices such that both G and G−e have an Eulerian
circuit for some e ∈ E(G). (4 points)

Does not exist: If G has an Eulerian circuit, every vertex has even degree. But when you
delete an edge, the two endpoints will have odd degree (since the graph is simple, hence
loopless), so the result will have no Eulerian circuit.
Scoring: +2 points for getting “impossible”, +2 points for a good reason

c. A simple connected graph G with ≥ 3 vertices such that both G and G−e have a Hamiltonian
cycle for some e ∈ E(G). (4 points)

The graph K4 works.
Scoring: 4 points for a correct example, no partial credit

d. A simple graph with at least two vertices and degree sequence (|V (G)|−1, |V (G)|−2, . . . 3, 2, 1, 0).
(4 points)

Does not exist: Because G is simple, any vertex with degree |V (G)| − 1 must be adjacent
to every other vertex in the graph. But there is a vertex of degree 0, which it cannot be
adjacent to.
Scoring: +2 points for getting “impossible”, +2 points for a good reason

e. A simple connected graph G such that the maximum size of a matching in G is 2, and the
minimum size of a vertex cover in G is 3. (4 points)

The cycle graph C5 works.
Scoring: 4 points for a correct example, no partial credit



4. New Proof

In a directed graph, the indegree of a vertex v, written di(v) is the number of edges
incident to v that are directed towards v, and the outdegree, written do(v) is the number of
edges incident to v directed away from v. For example, the vertex v in the graph below has
indegree 2 and outdegree 1.

v

Prove that for any directed graph G,∑
v∈V (G)

di(v) =
∑

v∈V (G)

do(v).

(6 points)

Every edge contributes 1 to the sum
∑

v∈V (G) di(v), and contributes 1 to the sum
∑

v∈V (G) do(v).
Therefore, ∑

v∈V (G)

di(v) = |E(G)| =
∑

v∈V (G)

do(v).

Scoring: roughly 6 points for a correct proof. 4-5 points for an almost-correct proof with
minor mistakes. 2-3 points for a solution that demonstrates at least some correct thought, but
makes no/minimal progress towards proving the statement.



5. New Proof 2

Let e be an edge of Kn. Calculate the number of spanning trees of Kn − e. Explain how you
got your answer. (6 points)

Let k denote the number of spanning trees of Kn containing the edge e. Notice the following
observations:

• There are n(n−2) spanning trees total, each of which contains n− 1 edges.

• There are n(n−1)/2 edges in Kn. Each of these edges is contained in k different spanning
trees.

Now consider the disjoint union of all spanning trees of Kn. We have two ways to count
all the edges in this gigantic graph. By the first observation: (n − 1)nn−2. By the second
observation: kn(n − 1)/2. Setting these equal gives kn/2 = nn−2, so k = 2nn−3. This means
there are nn−2−2nn−3 spanning trees of Kn which do not contain e, or st(Kn−e) = (n−2)nn−3.

Note: It is very tempting to try to prove this using the edge deletion-contraction method.
In fact, that’s the first approach I tried. I’ll be very generous with grading and give a lot of
partial credit to any reasonable attempt at solving the problem.

Scoring: 6 points if you got the correct formula, no questions asked. 5 points if you at-
tempted deletion/contraction and got stuck. 4 points if you attempted delection/contraction
and mistakenly assumed that contracting Kn by an edge gives Kn−1 to get a wrong answer.
All other methods of proof will be given 5 points if significant progress/effort was made, but
you got stuck, and 4 points if significant progress/effort was made, and you said some false
statement to arrive at an incorrect answer.



6. New Proof 3

Consider a deck of 52 cards where each card has an integer from 1 to 13 written on it, and
each such number is written on exactly four cards1. Suppose I shuffle the cards and deal them
face-down into 13 piles, each pile containing four cards. Prove that it is possible for me to
examine each pile, then pick exactly one card from each pile so that in total I’ve picked exactly
one card of each number. (10 points)

Let G be the graph with vertices {N1, . . . , N13} corresponding to the numbers 1, . . . , 13, and ver-
tices P1, . . . , P13 corresponding to the piles 1, . . . , 13. Vertex Ni is connected to vertex Pj if pile
Pj contains a card with number Ni. This is a bipartite graph, and a way of selecting the cards
so that I’ve picked one card of each number corresponds to finding a perfct matching. There-
fore, to complete the proof it suffices to verify Hall’s condition for the set A = {P1, . . . , P13}.
Any subset S ⊆ A of piles contains 4|S| cards. Because there are only four cards per number,
there must be at least 4|S|/4 = |S| different numbers present in the set of cards in the piles S.
Therefore, |N(S)| ≥ |S|.

Note: There is another way to do this problem where you set up the graph so that it has
an edge for each card (i.e. so if a pile has three 2’s and one 7, then the corresponding vertex
would have three edges to the vertex N2 and one edge to vertex P7). You can show that this
bipartite graph is 4-regular, so has a perfect matching by the result from class that states that
every regular bipartite graph has a perfect matching.

Scoring: +4 points if you managed to set up some bipartite graph for which a perfect
matching would result in a method of choosing cards. +6 points if you successfully proved
that the bipartite graph has a perfect matching. Points will be deducted from each of these
categories for minor errors

1This is just a “standard” deck of cards without jokers. The only purpose of this sentence is in case anyone
is unfamiliar with what a “standard” deck of cards is


