Most of the problems below are necessary to complete to understand the minicourse. Problems marked with * are not. Do not attempt the problems marked * until you have completed all the others.

Problems for after the first lecture

If you aren't familiar with the Hodge star operator, you can use the following description of it: on Minkowski space $\mathbb{R}_t \times \mathbb{R}^3_{x,y,z}$ with metric $-dt^2 + dx^2 + dy^2 + dz^2$, the Hodge star operator is a $C^{\infty}(M)$ -linear map

$$\star : \wedge^p T^* M \to \wedge^{4-p} T^* M$$

given by

$$dt \mapsto (-1)dx \wedge dy \wedge dz$$
$$dx \mapsto (-1)dt \wedge dy \wedge dz$$
$$dy \mapsto (-1)dt \wedge dz \wedge dx$$
$$dz \mapsto (-1)dt \wedge dx \wedge dy$$

$dt \wedge dx \mapsto (-1)dy \wedge dz$	$dx \wedge dy \mapsto dt \wedge dz$
$dt \wedge dy \mapsto (-1)dz \wedge dx$	$dy \wedge dz \mapsto dt \wedge dx$
$dt \wedge dz \mapsto (-1)dx \wedge dy$	$dz \wedge dx \mapsto dt \wedge dy$

```
\begin{aligned} dx \wedge dy \wedge dz &\mapsto (-1)dt \\ dt \wedge dy \wedge dz &\mapsto (-1)dx \\ dt \wedge dz \wedge dx &\mapsto (-1)dy \\ dt \wedge dx \wedge dy &\mapsto (-1)dz \end{aligned}
```

Warm up (short answer). Find the mistake in the following argument.

Suppose you have a electromagnetic tensor F on some contractible subset V of Minkowski space, and there is some smaller open set $U \subseteq V$ on which F vanishes identically. Then, because we can pick any $A \in \Omega^1(V)$ to be our electromagnetic potential (since V is contractible), and F vanishes on U, we can choose an Athat also vanishes on U. Then, if we perform experiments on particles that are confined to stay in U (and disregard all "quantum tunneling" effects that could bring a particle out of U), the $\int qA$ term in the action of the particle vanishes, so there is no electromagnetic influence on the particles.

1. Let M be Minkowski space. Suppose you've chosen a spacetime splitting for M with coordinates (t, x, y, z). Let E(t, x, y, z) and B(t, x, y, z) be vector-valued functions in these coordinates which represent the electric and magnetic fields in the presence of some electric density ρ and current j. Let $F \in \Omega^2(M)$ be the corresponding electromagnetic 4-tensor and J the corresponding electromagnetic current 1-form. Verify that Maxwell's equations are equivalent to

$$dF = 0$$

*d * F = J

- (*) Let E and B be as in problem 1. Assume they satisfy Maxwell's equations. Consider a change of coordinates for M obtained by a Lorentz boost in the x-direction of velocity v. Find expressions for the electric and magnetic fields in these new coordinates. (*)
- **3.** Let \hat{r} denote the vector field on \mathbb{R}^3 consisting of vectors of unit length that point radially away from the origin. Recall from grade school that the electric field caused by an electric charge of charge q at the origin is given by

$$\frac{q\hat{r}}{4\pi r^2}$$

- Write down the electromagnetic tensor for a point charge which is stationary at the origin. Your solution should have a singularity along the line $L = \{x = y = z = 0\}$ in M.
- Viewing F as a 2-form on $M \setminus L$, verify that F satisfies Maxwell's equations with J = 0.
- 4. Suppose $F \in \Omega^2(M)$ satisfies Maxwell's equations for J = 0.
 - Show that $\star F$ also satisfies Maxwell's equations.
 - Suppose you have chosen a spacetime splitting, so that F can be expressed in terms of electric and magnetic fields. Find explicit formulas for the electric and magnetic fields of $\star F$ in terms of the electric and magnetic fields corresponding to F.
- 5. Let F_{em} be the electromagnetic tensor described in question 4, and let $F_{mm} = \star F$. (the subscripts em and mm stand for "electric monopole" and "magnetic monopole", respectively). Write an expression in coordinates for F_{mm} as a 2-form, and also write an expression in coordinates for the electric and magnetic fields corresponding to F_{mm} in the same spacetime splitting used in problem 4.
- 6. Let A_+ and A_- be the 1-forms on $U_+ = \mathbb{R}^3 \setminus \{x = y = 0, x \le 0\}$ and $\mathbb{R}^3 \setminus \{x = 0 = 0, z \ge 0\}$, respectively, given by

$$A_{+} = \frac{YdZ - ZdY}{4\pi R(X+R)} \qquad \qquad A_{-} = \frac{ZdY - YdZ}{4\pi R(R-X)}$$

- If you want to practice your exterior differentiation, verify that $dA_+ = F_{mm}|_{U_+}$ and that $dA_- = F_{mm}|_{U_-}$. Otherwise, just accept that it's true.
- Let $\gamma_{\epsilon}(t): [0, 2\pi] \to M$ be the parametrized circle

$$X = 1$$
 $Y = \epsilon \cos(t)$ $Z = \epsilon \sin(t)$

Calculate $\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} A_{+}$ and $\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} A_{-}$. You can do this directly or by using Stokes' theorem.

• According to the path integral formulation of quantum mechanics, if A satisfies dA = F in a contractible domain, then the integral $\int_{\gamma} A$ describes the amount of phase that a particle of charge 1 "accumulates" as it travels along γ . You got different answers for this number depending on whether you used A_{-} or A_{+} above. Explain the paradox. In reality, how much phase *would* a particle of charge 1 accumulate when traveling around γ_{ϵ} for ϵ small?

Problems for after the third lecture

Warm up (short answer).

- What is the difference between the definition of a circle bundle and a principal U(1) bundle? Does a circle bundle always admit a structure of a principal U(1) bundle? If so, how many different ways are there to make a circle bundle into a principal U(1) bundle? Is a principal U(1) bundle always a circle bundle?
- Prove or find a counterexample: A principal U(1) bundle is trivial (i.e. equivariantly isomorphic to $M \times U(1)$ with the product action) iff it has a global section. Prove or find a counterexample: A vector bundle is trivial iff it has a global section.
- 1. (Do this problem only if you would like more pratice with hands-on coordinate calculations of connections and their curvature. If not, read through and do the next) Consider the principal U(1) bundle

$$\pi: \mathbb{R}^4 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\}$$
$$x \mapsto xi\overline{x}$$

where the expression for π uses the identification $\mathbb{R}^4 \cong \mathbb{H}$ and $\mathbb{R}^3 \cong \text{Im}(\mathbb{H})$. The U(1) action is given by $x \cdot e^{i\theta} = xe^{i\theta}$.

- Verify that $\alpha = r^{-2}(-x_1dx_0 + x_0dx_1 + x_3dx_2 x_2dx_3)$ on $\mathbb{R}^4 \setminus \{0\}$ is a connection form.
- Verify that

$$s_{+}: U_{+} \to \mathbb{R}^{4}$$

$$Xi + Yj + Zk \mapsto \frac{1}{\sqrt{2(X+R)}} \left((R+X) + 0i - Zj + Yk \right)$$

$$s_{-}: U_{-} \to \mathbb{R}^{4}$$

$$Xi + Yj + Zk \mapsto \frac{1}{\sqrt{2(R-X)}} \left(Y + Zi + 0j + (R-X)k \right)$$

are sections of π over the sets U_+ and U_- .

• Verify that

$$s_+^*(\alpha) = \frac{YdZ - ZdY}{2R(X+R)}$$
 and that $s_-^*(\alpha) = \frac{ZdY - YdZ}{2R(R-X)}.$

• Let $F_{mm} \in \Omega^2(\mathbb{R}^3 \setminus \{0\})$ be the form

$$F_{mm} = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{4\pi r^3}.$$

- Verify that $\frac{1}{2\pi}d(s_{+}^{*}\alpha) = F_{mm}|_{U_{+}}$ and that $\frac{1}{2\pi}d(s_{-}^{*}\alpha) = F_{mm}|_{U_{-}}$.
- 2. Let F_{mm} be the same form from the last problem, and let T_F be the corresponding current on all of \mathbb{R}^3 . Show that

$$dT_F = T_{\{0\}}$$

3. (*) Consider the electromagnetic tensor F due to a charged particle that you calculated in problem 3 of the last problem set, and let T_F be the corresponding current. Calculate the current $T_J = \star d \star T_F$ by describing how the current T_J acts on compactly supported forms. (here, T_J is a "current" in the mathematical sense and also a "current" in the common sense of electromagnetism).

- **4.** Let x_1, \ldots, x_N be distinct points in a connected compact oriented manifold M, and $a_1, \ldots, a_N \in \mathbb{R}$.
 - Describe necessary and sufficient conditions for the current $\sum a_i T_{\{x_i\}}$ to be closed.
 - Describe necessary and sufficient conditions for the current $\sum a_i T_{\{x_i\}}$ to be exact.
- 5. In lecture, we reviewed that a connection on a U(1) bundle has a curvature form ω for which $[\omega/2\pi]$ is an integral class. Correspondingly for gerbes, every 1-connection on a gerbe has a Dixmier-Douady form which represents an integral cohomology class. Reverse this construction to prove the following:
 - Let $F \in \Omega^2(M)$ be a closed 2-form for which [F] is an integral class. Prove that there is a principal S^1 -bundle with connection, whose curvature form is exactly F (not merely "in the same cohomology class as F").
 - Let $F \in \Omega^3(M)$ be a closed 3-form for which [F] is an integral class. Prove that there is a gerbe with 1-connection whose Dixmier-Douady 3-form is exactly F.