
Most of the problems below are necessary to complete to understand the minicourse. Prob-
lems marked with ∗ are not. Do not attempt the problems marked ∗ until you have completed
all the others.

Problems for after the first lecture
If you aren’t familiar with the Hodge star operator, you can use the following description of

it: on Minkowski space Rt×R3
x,y,z with metric −dt2 +dx2 +dy2 +dz2, the Hodge star operator

is a C∞(M)-linear map
? : ∧pT ∗M → ∧4−pT ∗M

given by

dt 7→ (−1)dx ∧ dy ∧ dz
dx 7→ (−1)dt ∧ dy ∧ dz
dy 7→ (−1)dt ∧ dz ∧ dx
dz 7→ (−1)dt ∧ dx ∧ dy

dt ∧ dx 7→ (−1)dy ∧ dz dx ∧ dy 7→ dt ∧ dz
dt ∧ dy 7→ (−1)dz ∧ dx dy ∧ dz 7→ dt ∧ dx
dt ∧ dz 7→ (−1)dx ∧ dy dz ∧ dx 7→ dt ∧ dy

dx ∧ dy ∧ dz 7→ (−1)dt
dt ∧ dy ∧ dz 7→ (−1)dx
dt ∧ dz ∧ dx 7→ (−1)dy
dt ∧ dx ∧ dy 7→ (−1)dz

Warm up (short answer). Find the mistake in the following argument.

Suppose you have a electromagnetic tensor F on some contractible subset V of
Minkowski space, and there is some smaller open set U ⊆ V on which F vanishes
identically. Then, because we can pick any A ∈ Ω1(V ) to be our electromagnetic
potential (since V is contractible), and F vanishes on U , we can choose an A
that also vanishes on U . Then, if we perform experiments on particles that are
confined to stay in U (and disregard all “quantum tunneling” effects that could
bring a particle out of U), the

∫
qA term in the action of the particle vanishes,

so there is no electromagnetic influence on the particles.

1. Let M be Minkowski space. Suppose you’ve chosen a spacetime splitting for M with co-
ordinates (t, x, y, z). Let E(t, x, y, z) and B(t, x, y, z) be vector-valued functions in these
coordinates which represent the electric and magnetic fields in the presence of some electric
density ρ and current j. Let F ∈ Ω2(M) be the corresponding electromagnetic 4-tensor
and J the corresponding electromagnetic current 1-form. Verify that Maxwell’s equations
are equivalent to

dF = 0
?d ? F = J



2. (*) Let E and B be as in problem 1. Assume they satisfy Maxwell’s equations. Consider a
change of coordinates for M obtained by a Lorentz boost in the x-direction of velocity v.
Find expressions for the electric and magnetic fields in these new coordinates. (*)

3. Let r̂ denote the vector field on R3 consisting of vectors of unit length that point radially
away from the origin. Recall from grade school that the electric field caused by an electric
charge of charge q at the origin is given by

qr̂

4πr2 .

• Write down the electromagnetic tensor for a point charge which is stationary at the
origin. Your solution should have a singularity along the line L = {x = y = z = 0}
in M .
• Viewing F as a 2-form on M\L, verify that F satisfies Maxwell’s equations with
J = 0.

4. Suppose F ∈ Ω2(M) satisfies Maxwell’s equations for J = 0.

• Show that ?F also satisfies Maxwell’s equations.
• Suppose you have chosen a spacetime splitting, so that F can be expressed in terms

of electric and magnetic fields. Find explicit formulas for the electric and magnetic
fields of ?F in terms of the electric and magnetic fields corresponding to F .

5. Let Fem be the electromagnetic tensor described in question 4, and let Fmm = ?F . (the sub-
scripts em and mm stand for “electric monopole” and “magnetic monopole”, respectively).
Write an expression in coordinates for Fmm as a 2-form, and also write an expression in co-
ordinates for the electric and magnetic fields correspending to Fmm in the same spacetime
splitting used in problem 4.

6. Let A+ and A− be the 1-forms on U+ = R3\{x = y = 0, x ≤ 0} and R3\{x = 0 = 0, z ≥ 0},
respectively, given by

A+ = Y dZ − ZdY
4πR(X +R) A− = ZdY − Y dZ

4πR(R−X)

• If you want to practice your exterior differentiation, verify that dA+ = Fmm
∣∣
U+

and
that dA− = Fmm

∣∣
U−

. Otherwise, just accept that it’s true.

• Let γε(t) : [0, 2π]→M be the parametrized circle

X = 1 Y = ε cos(t) Z = ε sin(t)

Calculate limε→0
∫
γε
A+ and limε→0

∫
γε
A−. You can do this directly or by using

Stokes’ theorem.
• According to the path integral formulation of quantum mechanics, if A satisfies
dA = F in a contractible domain, then the integral

∫
γ A describes the amount of

phase that a particle of charge 1 “accumulates” as it travels along γ. You got different
answers for this number depending on whether you used A− or A+ above. Explain
the paradox. In reality, how much phase would a particle of charge 1 accumulate
when traveling around γε for ε small?



Problems for after the third lecture
Warm up (short answer).

• What is the difference between the definition of a circle bundle and a principal U(1)
bundle? Does a circle bundle always admit a structure of a principal U(1) bundle?
If so, how many different ways are there to make a circle bundle into a principal
U(1) bundle? Is a principal U(1) bundle always a circle bundle?
• Prove or find a counterexample: A principal U(1) bundle is trivial (i.e. equivariantly

isomorphic to M × U(1) with the product action) iff it has a global section. Prove
or find a counterexample: A vector bundle is trivial iff it has a global section.

1. (Do this problem only if you would like more pratice with hands-on coordinate calculations
of connections and their curvature. If not, read through and do the next) Consider the
principal U(1) bundle

π : R4\{0} → R3\{0}
x 7→ xix

where the expression for π uses the identification R4 ∼= H and R3 ∼= Im(H). The U(1)
action is given by x · eiθ = xeiθ.

• Verify that α = r−2(−x1dx0 + x0dx1 + x3dx2 − x2dx3) on R4\{0} is a connection
form.
• Verify that

s+ : U+ → R4

Xi+ Y j + Zk 7→ 1√
2(X +R)

((R+X) + 0i− Zj + Y k)

s− : U− → R4

Xi+ Y j + Zk 7→ 1√
2(R−X)

(Y + Zi+ 0j + (R−X)k)

are sections of π over the sets U+ and U−.
• Verify that

s∗+(α) = Y dZ − ZdY
2R(X +R) and that s∗−(α) = ZdY − Y dZ

2R(R−X) .

• Let Fmm ∈ Ω2(R3\{0}) be the form

Fmm = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy
4πr3 .

• Verify that 1
2πd(s∗+α) = Fmm

∣∣
U+

and that 1
2πd(s∗−α) = Fmm

∣∣
U−

.

2. Let Fmm be the same form from the last problem, and let TF be the corresponding current
on all of R3. Show that

dTF = T{0}

3. (*) Consider the electromagnetic tensor F due to a charged particle that you calculated in
problem 3 of the last problem set, and let TF be the corresponding current. Calculate
the current TJ = ?d ? TF by describing how the current TJ acts on compactly supported
forms. (here, TJ is a “current” in the mathematical sense and also a “current” in the
common sense of electromagnetism).



4. Let x1, . . . , xN be distinct points in a connected compact oriented manifoldM , and a1, . . . , aN ∈
R.

• Describe necessary and sufficient conditions for the current
∑
aiT{xi} to be closed.

• Describe necessary and sufficient conditions for the current
∑
aiT{xi} to be exact.

5. In lecture, we reviewed that a connection on a U(1) bundle has a curvature form ω for
which [ω/2π] is an integral class. Correspondingly for gerbes, every 1-connection on a
gerbe has a Dixmier-Douady form which represents an integral cohomology class. Reverse
this construction to prove the following:

• Let F ∈ Ω2(M) be a closed 2-form for which [F ] is an integral class. Prove that
there is a principal S1-bundle with connection, whose curvature form is exactly F
(not merely “in the same cohomology class as F”).
• Let F ∈ Ω3(M) be a closed 3-form for which [F ] is an integral class. Prove that

there is a gerbe with 1-connection whose Dixmier-Douady 3-form is exactly F .


