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Rings: Motivation and Definition

Throughout your education, you’ve encountered many different mathematical objects that can
be “added” and “multiplied”:

Integers, rationals, real numbers: You learned what it meant to “add” and “multiply”
numbers in primary school.

Polynomials: You learned what it meant to “add” and “multiply” polynomials with real
coefficients in high school

Square matricies: You learned to “add” square matrices by adding the corresponding terms
of the matrices, and to “multiply” square matrices by the matrix multiplication algorithm.

Functions: You “add” functions by constructing a new function whose output values are the
sum (as numbers) of the output values of the original functions, and you “multiply” func-
tions by constructing a new function whose output values are the product (as numbers)
of the output values of the original functions.

If you were an apt student, you might have complained to your teachers that the terms “add”
and “multiply” are really overloaded! Why use the same two words to describe such different
operations on such different kinds of mathematical objects?

One reason is that there are properties of these “adding” and “multiplying” operations that
are true in all of these examples – properties such as a+b = b+a and a(bc) = (ab)c and a(b+c) =
ab + ac and (b + c)a = ba + ca. In this way, the process of “adding” and “multiplying” square
matrices (or polynomials, or functions) behaves like the process of “adding” and “multiplying”
numbers. As you learn more mathematics, you will encounter even more mathematical objects
that have “addition” and “multiplication” operations with these properties, so mathematicians
have decided to give a name to these objects: a ring.

Definition: A ring is a set R with two operations, called addition (written a+b)
and multiplication (written a ∗ b or a · b or ab) such that

• (R,+) is an abelian group. In case you forget, this means:

– Addition is associative: a + (b + c) = (a + b) + c

– There is an identity element 0, with 0 + a = a + 0 = a for all a.

– Every element has an inverse a + (−a) = 0.

– Addition is commutative: a + b = b + a.

• Multiplication is associative: a · (b · c) = (a · b) · c.
• Multiplication distributes over addition:

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a

Notation: We often write “0” for the additive identity of a ring. For any ring
element r and natural number n, then expression rn means r multiplied by
itself n times.



Examples of Rings

We’ve seen some examples of rings above.

Example 0: The integers Z, the rational numbers Q, the real numbers R, the complex numbers
C, the polynomials with real coefficients R[x], the n× n matrices of integers Mn(Z), the
continuous functions on the real line C(R). In each case, the addition and multiplication
operations are the ones you learned in grade school.

We can also invent new rings by taking abelian groups we know from group theory, and inventing
a multiplication rule that satisfies the ring axioms.

Example 1: Recall that the elements of the abelian group Z4(= Z/4Z) are the cosets

[0] = {4k | k ∈ Z} [1] = {1 + 4k | k ∈ Z}
[2] = {2 + 4k | k ∈ Z} [3] = {3 + 4k | k ∈ Z}.

We can define a multiplication operation on Z4 according to the table below.

∗ [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

In fact, we can make any of the abelian groups Z/nZ into a ring by defining multiplication
as [a][b] = [ab].

Example 2: For any real number n, the abelian group nZ = {nk | k ∈ Z} is a ring under the
standard multiplication of numbers. When n is an integer, nZ is a subset of Z which is
closed under addition, multiplication, and taking additive inverses. In other words, nZ is
a subset of the ring Z which is itself a ring.

Definition: A nonempty subset S ⊆ R of a ring which is closed under the
addition and multiplication operations, as well as taking additive inverses,
is called a subring of R.

Constructing New Rings from Old Ones

Construction 1: For any ring R, we can consider the polynomials with coefficients in R,
written R[x]. Examples of the rules for addition and multiplication are below. Each ri
and r′i is an element of R.
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Construction 2: If R and S are two rings, the product R×S is the ring whose elements are
pairs (r, s), where r ∈ R and s ∈ S, and the operations are defined as follows.

(r, s) + (r′, s′) = (r + r′, s + s′)

(r, s) · (r′, s′) = (r · r′, s · s′)



Construction 3: If R is any ring, we can consider the ring of n × n matrices with entries in
R, written Mn(R). The addition and multiplication rules for square matrices is the same
as the one you learned in grade school.

Construction 4: For certain rings R, we can construct a new ring whose elements behave like
fractions of elements of R, generalizing the way in which elements of Q are fractions of
elements of Z. We’ll learn this construction next lecture.

WARNINGS

Although we can think of rings as “mathematical objects that you can add and multiply, sort
of like numbers,” there are some properties of numbers that are not true in all rings.

Warning 0: Not all rings have an element 1 that satisfies the condition 1a = a1 = a for all
ring elements a, but the most commonly encountered rings in mathematics do. Some
(misguided) people include the requirement “1 exists” in the definition of a ring.

Definition: An element 1 of a ring R that satisfies 1a = a1 = a for all a ∈ R
is called a multiplicative identity of R. A ring with a multiplicative
identity element 1 is called a ring with unity or ring with identity.

If a multiplicative identity exists, it must be unique. To see this, suppose 1a and 1b are
both multiplicative identities. Then 1a1b = 1b and 1a1b = 1a, so 1b = 1a.

Warning 1: Sometimes, ab 6= ba. For example, try taking two elements a and b in the ring of
2 by 2 matrices of integers and calculating ab and ba. Unless you got very lucky when
you chose a and b, you will find that ab 6= ba. There is a special name given to a ring for
which ab = ba is true for all elements a and b.

Definition: A ring R is commutative if for all a, b ∈ R, ab = ba.

Warning 2: You can’t “divide” in rings. In the ring of real numbers, the expression a
b is

shorthand for ab−1, and the symbol b−1 means the multiplicative inverse of b (i.e. the
real number such that b−1 · b = b · b−1 = 1). In an arbitrary ring R, not all elements have
multiplicative inverses. First, it’s possible that a ring doesn’t even contain a multiplicative
identity (so the concept of a “multiplicative inverse” doesn’t even make sense). Even if a
ring contains 1, some elements won’t have a multiplicative inverse. Elements that do are
called units.

Definition: For a ∈ R, an element b ∈ R is called a multiplicative inverse of
a if ab = ba = 1. If a has a multiplicative inverse, it is called invertible or
a unit. If every nonzero element of R is a unit then R is called a division
ring. A commutative division ring is called a field.

Warning 3: For elements a, b in a ring R, sometimes ab = 0 even when a and b are both
nonzero. For example, [2] · [3] = 0 in Z/6Z.



Definition: If a and b are nonzero elements of R such that ab = 0 or ba = 0,
then a and b are called zero divisors. A commutative ring R with identity
is called an integral domain if it has no zero divisors.

For these reasons, you have to be very careful when you’re proving things about rings, because
you might get tempted to use properties that feel true but aren’t. On the other hand, there
are some properties of rings that feel true and are true. I’ve proved one of them below.

Proposition: Let R be a ring. For any a ∈ R, 0a = a0 = 0

Proof: Because 0 is an additive identity, 0 + 0 = 0. Combining this with the distributive
property gives

0a = (0 + 0)a = 0a + 0a.

Adding (-0a) to both sides of the equation proves 0 = 0a. The proof that a0 = 0 is
similar.

Proposition: Let R be a ring with identity. If b1 and b2 are both multiplicative inverses of a,
then b1 = b2.

Proof: Observe that b1ab2 = b11 = b1, and also b1ab2 = 1b2 = b2. Therefore, b1 = b2

Summary of Today’s Vocab

Commutative ring: A ring R is commutative if ab = ba for all a, b ∈ R.

Division ring: A ring R with identity is a divison ring if every nonzero element
is a unit.

Field: A commutative ring R with identity is called a field if every nonzero
element is a unit.

Identity: An element a of a ring is the identity or one if ab = ba = b for all
b ∈ R. Note: if it exists, it is unique.

Integral domain: A commutative ring R with identity is called an integral do-
main if it has no zero divisors.

Unit: An element a of a ring with identity is a unit if there is some b ∈ R for
which ab = ba = 1.

Zero: The additive inverse of a ring is called zero. Note: it is unique.

Zero divisor: An element a 6= 0 of a ring R is a zero divisor if there is b 6= 0
such that ab = 0 or ba = 0.


