Sept 20: Hamiltonian Cycles and Tournaments

MAT332 — Geoffrey Scott

Last week, we studied walks that use no edge more than once (trails) and walks that use
each edge exactly once (Eulerian trails). Today, we study trails that use no vertex more than
once (paths) and trails that use each vertex exactly once (Hamiltonian paths).

Definition: A path is a trail that uses each vertex at most once, (except the
first vertex may equal the last vertex). A cycle is a closed path. A path
or cycle is Hamiltonian if it uses every vertex.

Recall that a train enthusiast might plan a vacation by finding an Eulerian circuit in the graph
of train routes so that she could ride on all the train tracks and end where she started. A train
station enthusiast would want to find a Hamiltonian cycle. If you represent your social friend
network as a graph (where vertices represent people and edges represent friendship), then a
Hamiltonian cycle represents a way to seat your friends around a circular dinner table so that
everyone is friends with the two people sitting next to them.

In general, Hamiltonian paths and cycles are much harder to find than Eulerian trails and
circuits. We will see one kind of graph (complete graphs) where it is always possible to find
Hamiltonian cycles, then prove two results about Hamiltonian cycles.

Definition: The complete graph on n vertices, written K,, is the graph
that has n vertices and each vertex is connected to every other vertex by
an edge.
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Remark: For every n > 3, the graph K, has n! Hamiltonian cycles: there are n choices for
where to begin, then (n — 1) choices for which vertex to visit next, then (n — 2) choices
for which vertex to visit after that, and so on. Because the graph is complete, there will
always be an edge that will take you to the next vertex on your list. After the final vertex,
take the edge that connects back to your starting vertex.!

In general, having more edges in a graph makes it more likely that there’s a Hamiltonian
cycle. The next theorem says that if all vertices in a graph are connected to at least half of the
other vertices, there is guaranteed to be a Hamiltonian cycle.

! Ask yourself: where did we use the condition that n > 3? Try and see what happens if n = 2.



Theorem: Let G be a simple graph with at least 3 vertices. If every vertex of G has degree
> |V(G)|/2, then G has a Hamiltonian cycle.

Proof: Assume that G satisisfies the condition, but does not have a Hamiltonian cycle. If it
is possible to add edges to G so that the result still a simple graph with no Hamiltonian
cycle, do so. Continue adding edges until it becomes impossible to add edges without
creating a cycle. Call this new graph G’.

Because G’ has no Hamiltonian cycle and has > 3 vertices, it cannot be a complete graph
— i.e. there are vertices v, w € V(G’) that are not connected by an edge. Adding the edge
vw to G’ will result in a graph having a Hamiltonian cycle; deleting the edge vw from
this cycle produces a Hamiltonian path in G’ from v to w. Let (v,v2,v3,...,v,-1,w) be
the vertices in this path in order (so |V (G’)| = n).

Define two subsets of the set {2,3,...,n — 2} as follows

A = all numbers i € {2,3,...,n — 2} such that vv;;1 is an edge of G’
B = all numbers i € {2,3,...,n — 2} such that v;w is an edge of G’

Notice that every edge with endpoint v is accounted for in the set A except for the edge
vuy. Because d(v) > n/2, this means |A| > n/2— 1. Similarly, |B| > n/2 —1. Because the
set {2,3,...,n — 2} has n — 3 elements in it, and |A| + |B| > n — 2, at least one element
of {2,3,...,n — 2} isin AN B. Then there is a Hamiltonian cycle with vertices

(U, V2,3, .+, Viy Wy Vp—1, Up—2y -+« + y Vi1, V)
which gives the desired contradiction.

Tournaments

Last class, we learned the definition of a directed graph (digraph for short): a graph where
each edge has a prescribed direction. The definitions of a walk, trail, Fulerian circuit, path,
cycle, Hamiltonian cycle generalize to the context of digraphs by insisting that edges may only
be traversed in this prescribed direction, much like a one-way street. We learned that complete
graphs with at least 3 vertices always have Hamiltonian cycles. What if the edges are oriented?
Oriented digraphs whose underlying graph is complete are called tournaments.

Definition: A tournament on n vertices is a directed graph whose underlying
graph is K.

Theorem: Every tournament has a Hamiltonian path (not necessarily a cycle!).

Proof: We prove this by induction on the number of vertices. If a tournament has just one
vertex, the claim is true — the path containing just the single vertex is Hamiltonian.
Now assume we know the claim is true for all tournaments on n vertices, and consider a
tournament G on n + 1 vertices. Let v be any vertex in G. If we delete v (and all edges
with v as an endpoint), the remaining tournament on n edges must have a Hamiltonian
path by the inductive hypothesis. Label the vertices in this path vi,vo,...v,. In the
original tournament G, consider the possible orientations of the edges incident to v:

There are three cases:



Figure 1: A tournament with underlying graph Kj
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Figure 2: Consider the possible orientations of the dashed lines

Case 1: If vv; is an edge (i.e. the edge containing v and v is oriented towards v;), then
there is a Hamiltonian path with vertex order v, vy,...,vy.

Case 2: If v,v is an edge, there is a Hamiltonian path with vertex order vy, ..., v,,v.

Case 3: If Case 1 and Case 2 do not hold, as you look through the edges incident to v
in order (starting with the edge containing v;, then the edge containing ve, etc...)
there must come a point where the edges switch from pointing towards v to pointing
away from v. That is, there is at least one number 1 < ¢ < n — 1 for which v;v is
an edge and vv;41 is an edge. Then there is a Hamiltonian path with vertex order

V1,V2y...,U;,U,Vj41y...,Un.
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Graph Isomorphism

When are two graphs “the same”? According to the definition of a graph, the two sets
of vertices must be the exact same set, the set of edges must be the exact same set, and the
function from edges to vertices must be the exact same function. But if you want to study just
the structure of how the vertices are connected to each other, rather than the details of exactly
what the vertices represent, then this notion of “sameness” is too restrictive, and the notion of
isomorphic graphs is more appropriate.



Definition: An isomorphism between graphs G and H is a pair of bijections
¢:V(G) - V(H) and ¢ : E(G) — E(H) such that for every e € E(G), if
e has endpoints v, w then ¢(e) has endpoints ¢(v) and p(w).

If G and H are simple graphs, then an isomorphism can be described just
using a bijection ¢ : V(G) — V(H) having the property that two vertices
v,w € V(G) are adjacent in G if and only if ¢(v) and p(w) are adjacent in
H.

Two graphs G, H are said to be isomorphic if there is an isomorphism
from G to H.




