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Abstract

We consider random conformally invariant paths in the complex plane (SLEs). Using the Coulomb gas
method in conformal field theory, we rederive the mixed multifractal exponents associated with both the
harmonic measure and winding (rotation or monodromy) near such critical curves, previously obtained by
quantum gravity methods. The results also extend to the general cases of harmonic measure moments and
winding of multiple paths in a star configuration.
Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. Historical perspective

The subject of conformally invariant (CI) random curves in two dimensions has seen spec-
tacular progress in recent years thanks to the invention of the Stochastic Loewner Evolution
(SLE) [1–3]. This represents the crowning achievement of studies of 2D critical systems under-
taken more than thirty-years ago. The first advance came with the introduction of the so-called
Coulomb-gas (CG) formalism. The critical properties of fundamental two-dimensional statistical
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models, like the O(N) and Potts models, then found an analytic description within that formal-
ism, which led to a number of exact results [4,5].

This was soon followed by the conformal invariance breakthrough that occurred in 1984 with
the celebrated BPZ article [6]. It was followed by many studies in conformal field theory (CFT),
which became an essential source of applications to 2D statistical mechanics [7,8]. That finally
caught the attention of mathematicians [9], first through the peculiar cases of Cardy’s formula
for crossing probabilities in percolation [10] and of intersection properties of planar Brownian
paths [11], resulting several years later in the advent of the SLE era [12–14].

Meanwhile, the relationship between the CG and CFT approaches was brought to light
when the Coulomb gas representation appeared as an explicit model for a continuum of two-
dimensional CFTs [15,16]. A Gaussian free field theory in a given domain, modified by a
background charge 2α0 (the “charge at infinity”) that couples the field to the domain or bound-
ary curvature, provides a concrete representation of abstract conformal field theories with central
charge c = 1 − 24α2

0 � 1 [16]. Many of the critical properties of statistical models could then be
obtained from the fusion of these approaches.

Another advance came in 1988 with the intrusion into statistical mechanics of two-
dimensional quantum gravity (QG) [17]. The so-called KPZ relation between conformal weights
in presence of a fluctuating metric and those in the Euclidean complex plane [17,18] could then
be checked by explicit calculations [19–21]. Though it is not the subject of this article, one can-
not avoid mentioning in passing the important body of knowledge accumulated since then in the
related field of random matrix theory.

A decade later, just before the advent of SLE, it became clear, first from the reinterpretation of
an independent rigorous study in probability theory on intersection properties of planar Brownian
paths [22], that an underlying quantum gravity structure played a unifying role in conformal
random geometry in the complex plane [23]. In particular, revisiting QG allowed the prediction
of fine geometrical, i.e., multifractal, properties of random critical curves.

Those concerned the multifractal spectra associated with the moments of the harmonic mea-
sure [24], i.e., the electrostatic potential, near CI curves, which could be derived exactly within
that approach for any value of the central charge c [25]. A generalization concerned the peculiar
mixed multifractal spectrum that describes both the harmonic measure moments and the indef-
inite winding or rotation (i.e., as logarithmic spirals) [26] of a CI curve about any of its points
or of the Green lines of the potential [27]. Higher multifractality spectra were also introduced
and calculated, concerning multiple moments of the harmonic measure and winding in various
sectors of multiple random (SLE) paths in a star configuration [28,29].

All these studies resorted to quantum gravity, by using a probabilistic representation of
harmonic measure moments in terms of collections of Brownian paths, and by performing a
“transmutation” of the latter paths into multiple (mutually-avoiding) SLEs, the rules of which
are established within the QG formalism. The mixed harmonic-rotational spectrum was then
obtained by blending this method with an earlier Coulomb gas study of the winding angle distri-
butions of critical curves [30].

In mathematics, the same multifractal harmonic measure or mixed spectra are the subject of
present studies and can be obtained rigorously via the probabilistic SLE approach [31,32].

Recently, the same problem of the geometrical properties of critical curves was addressed in
the physics literature via the Coulomb gas approach alone [33,34]. That work in particular used
the statistical equivalence between correlation functions of conformal operators in the complex
plane C and correlation functions of a subset of these operators in presence of SLEs, i.e., in C

cut by the latter [35–37]. Riemann uniformizing conformal maps were then devised to unfold
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the random paths onto the outside of some smooth domain such as the unit disk. Standard CFT
transformation rules of primary conformal operators were then the tool of choice. They allowed
in particular to recover the multifractal exponents associated with harmonic measure moments
near critical curves, originally obtained from quantum gravity.

This ingenious approach thus raised the open question of how to generalize it to mixed har-
monic and winding properties of random conformal curves, and recover the associated mixed
multifractal spectra. The aim of the present article is to present such a generalization, still solely
within the Coulomb gas formalism.

Not surprisingly, the main ingredient is the use of arbitrary chiral primary operators, instead
of the more familiar spinless ones. Their associated CFT transformation rules under arbitrary
conformal maps will then yield information about the rotations that occur along Green lines near
conformally invariant random paths.

A technical subtlety will arise here, since one no longer uses correlation functions of oper-
ators alone to extract geometrical information about windings of random paths. To study such
windings, it is convenient to resort to products of vertex operators, without statistical averaging,
and study their monodromy properties at short distance. These encode the asymptotic geometri-
cal rotation properties of the random paths and can be analyzed via operator product expansions,
as will be shown below.

1.2. Harmonic measure and winding moments

Definitions
Let us consider a random conformal path S , such as the trace of a Stochastic Loewner Evo-

lution (SLE), or a critical scaling curve in a two-dimensional critical statistical system (Fig. 1).
Consider a point 0 ∈ S and a point z /∈ S . Define ω̃(0, z) as the harmonic measure of the ball
Bz(0) of radius |z|, centered at 0. This harmonic measure is the probability that a Brownian
motion, started “at infinity”, first hits S inside the ball Bz(0). Alternately, one can consider an
electrostatic potential, with Dirichlet boundary condition 0 on the equipotential S and value 1 on
a large circle “at infinity”. The harmonic measure ω̃(0, z) is then the electric charge induced on
S ∩Bz(0). Let ϑ(z) be the (possibly indefinite) rotation angle of the Green line (i.e., electrostatic
field line) passing through point z, when z tends to 0 while avoiding S ; equivalently, this is the
rotation angle of the equipotential passing through z (i.e., path S for z → 0).

We shall evaluate the (typical) asymptotic behavior for z → 0 of the mixed moment,

(1)ω̃h(z) exp
(−pϑ(z)

) ∼ |z|x̂(h,p),

Fig. 1. A random conformal path S , equipped with a ball Bz(0) centered at point 0 ∈ S and passing through point z /∈ S .
The winding angle ϑ(z) essentially measures the (possibly multiple or indefinite) rotation of the path S up to point z,
when z → 0.
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also expected when averaging over configurations of the random path. The critical exponent
x̂(h,p) depends on the two arbitrary parameters h and p explicitly [27].

It is also interesting to consider in general multiple SLE paths with a n-arm star topology, and
to define in a similar way the multiple mixed moments [29]:

(2)
n∏

i=1

ω̃
hi

i (z) × exp
(−pϑ(z)

) ∼ |z|x̂({hi };p).

Here ω̃i(z) is the harmonic measure in the ith sector of the star, within the ball Bz(0) of radius
|z| centered at apex 0, while ϑ(z) is the common monodromy angle describing the rotation for
z → 0 of the Green lines between the arms of the random conformal star. The previous single
path case can be seen as a two-star configuration with ω̃i=1,2(z) the harmonic measures of the
two sectors cut by the path inside the ball Bz(0).

Here again, the critical exponent x̂({hi},p) depends explicitly on all arbitrary exponents hi

and rotation parameter p [29], as we shall see in Section 3.

Riemann map
A known way of computing these moments is to consider the conformal map w(z) which

transforms the exterior of the random path S into the exterior of the unit disk D. The derivative
of this map, w′(z), encodes all the relevant geometrical information. For z → 0, one has the
equivalence for the harmonic measure ω̃(z) ∼ |zw′(z)|, while the winding angle is given asymp-
totically by ϑ(z) � − argw′(z). Thus the mixed moments (1) above can be studied as well via
the moments associated with the derivative of the conformal map

(3)
∣∣w′(z)

∣∣h exp
[
p argw′(z)

] ∼ |z|x(h,p),

with a now obvious shift of the critical exponent x(h,p) := x̂(h,p) − h.
In the case of a n-arm star, one takes a set of points zi each in a separate sector i = 1, . . . , n,

and with distances |zi | ∼ |z| all scaling in the same way. Then the windings in each sector are
asymptotically equivalent so that for all i, argw′(zi) � −ϑ(z), whence

n∏
i=1

∣∣w′(zi)
∣∣hi exp

[
pi argw′(zi)

] ∼
n∏

i=1

∣∣w′(zi)
∣∣hi × exp

[−pϑ(z)
]

(4)∼ |z|x({hi };p),

where p := ∑n
i=1 pi and x({hi};p) := x̂({hi};p) − ∑

i hi .
To keep the formalism and technical notations to a minimum, and to avoid confusing the

reader, we have simply adopted the notations of previous work by the Chicago group [34], of
which the present study can be considered as a generalization. The reader is thus referred to their
article which contains some relevant introductory details. The connection to our previous results
and notation more familiar in quantum gravity will be seen at the end of this article.
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2. Derivation

2.1. Star and operator products

Vertex functions
In complex Gaussian free field theory [38,39], the basic objects considered here are “operator

products”, i.e., products of so-called vertex functions:

(5)P :=
[

n∏
i=1

Oα′
i ,ᾱ

′
i
(zi , z̄i )

]
C

,

where each vertex function or “operator” Oα,ᾱ(z, z̄) is formally made of two respectively holo-
morphic and anti-holomorphic components

Oα,ᾱ(z, z̄) = V α(z) × V̄ ᾱ(z̄),

(6)V α(z) := ei
√

2αφ(z), V̄ ᾱ(z̄) := ei
√

2ᾱφ̄(z̄),

with Gaussian free-field correlators:〈
φ(z)φ(z′)

〉 = − log(z − z′),
〈
φ̄(z̄)φ̄(z̄′)

〉 = − log(z̄ − z̄′),
(7)

〈
φ(z)φ̄(z̄′)

〉 = 0.

The holomorphic and the anti-holomorphic weights of the vertex operators are found in a stan-
dard way by applying the stress–energy tensor to them:

(8)h = hα = α(α − 2α0), h̄ = hᾱ = ᾱ(ᾱ − 2α0),

where 2α0 is the background charge acting in the Coulomb gas representation of the Gaussian
free field theory. A given weight h thus corresponds to two possible charges:

(9)αh = α0 ±
√

α2
0 + h,

an equation which applies separately to holomorphic and anti-holomorphic components. A vertex
operator is spinless (meaning that h = h̄) if either ᾱ = α or ᾱ = 2α0 − α. In the sequel, since we
are interested in the rotation of conformally invariant curves, the main tool is the consideration of
chiral operators, as opposed to the usual case of spinless ones. Therefore we explicitly consider
in (5) operators Oα′

i ,ᾱ
′
i

with different conformal weights:

h′
i := hα′

i

= hᾱ′

i
=: h̄′

i .

Star operator product
To study the harmonic or rotation properties of a star configuration of n critical curves, i.e.,

SLEs, the main mathematical object is the star operator product [34]

(10)Pn

({zi, z̄i}
) :=

[
Ψ0,n/2(0)

n∏
i=1

Oα′
i ,ᾱ

′
i
(zi , z̄i )

]
C

,

where the operator Ψ0,n/2(0) in (10) is, in the conformal field theory parlance, the operator corre-
sponding to the existence of n critical curves originating at point z = 0 in the plane. It represents
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the seed of a star configuration of n such curves, i.e., SLEs. The test operators Oα′
i ,ᾱ

′
i

are a priori
chiral, so that α′

i 
= ᾱ′
i (or 
= 2α0 − ᾱ′

i ).
We shall need the standard CG notations for holomorphic charges [39]:

(11)αr,s := α0 − 1

2
(rα+ + sα−) = 1

2
(1 − r)α+ + 1

2
(1 − s)α−,

where the basic charges are given in terms of the SLE parameter κ ∈ [0,8] by [34]

(12)α+ =
√

κ

2
, α− = − 2√

κ
,

(13)2α0 = α+ + α− =
√

κ

2
− 2√

κ
.

The charges α± satisfy the simple relations

α± = α0 ±
√

α2
0 + 1,

thus both correspond to a conformal weight hα± = 1, leading to the possibility of using them as
fundamental “screening charges” to build up the algebra of screening operators [16].

The central charge of the CFT associated with the Gaussian free field theory, modified à la
Feigin–Fuchs and Dotsenko–Fateev by the background charge 2α0, is given by

(14)c = 1 − 24α2
0 = 1 − 3

2

(κ − 4)2

κ
,

while the conformal weights corresponding to charges αr,s are

(15)hr,s := αr,s(αr,s − 2α0) = (rκ − 4s)2 − (κ − 4)2

16κ
.

In this representation, the holomorphic (or anti-holomorphic) charge of the bulk curve-
creating operator Ψ0,n/2 can be taken to be α0,n/2 = α0 − n

4 α− (with conjugate α0,−n/2), and
corresponds in the Coulomb gas formalism to a combination of electric and magnetic charges
[34,40]. The corresponding operator is spinless with conformal weight [40]

(16)h0,n/2 = 4n2 − (κ − 4)2

16κ
.

Notice that operator products such as (5) or (10) are understood as objects to be inserted in corre-
lation functions, in the same way as the formal holomorphic vs anti-holomorphic factorization (6)
is meaningful only in such correlations (6). Now, in the Coulomb gas formulation of conformal
field theory, correlation functions are to be evaluated for a set of charges which overall respect
electroneutrality, so that the sum of the latter always equals −2α0, to compensate for the exis-
tence of the background charge 2α0. So ultimately, the set of charges introduced by the operator
product Pn near the origin, namely the set {α0,n/2, (α

′
i , ᾱ

′
i ), i = 1, . . . , n} has to be compensated

by other charges located at the observation points of the other remaining vertex functions.
When dealing with “conformal blocks”, namely treating separately the holomorphic and anti-

holomorphic parts in correlation functions, electroneutrality should apply separately to both
sectors. Furthermore, if holomorphic (or anti-) electroneutrality does not apply in the arguments
of the correlation functions of the original vertex operators, it is known that supplementary in-
tegral screening operators, with screening charges α+ and α− (12), can be introduced to extend
the domain of definition of the theory.
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This caveat here is to explain why, when dealing with local operator products, such as that
(5) or (10), one does not have to enforce Coulomb gas neutrality rules locally, but only globally.
We are here actually concerned only with the short distance and monodromy properties of the
star operator product (10) near the origin, which result from the analysis of the short-distance
expansion of chiral operators Oα′,ᾱ′ in presence of the spinless curve-creating one Ψ0,n/2, and
the CG formalism will be kept at a minimum. It would be interesting to make a more complete
study of the algebra of holomorphic operators, including screening ones, for the present problem
and in the context of SLE theory [16,41].

2.2. Star operator product expansion

OPE for vertex functions
Let us first consider an arbitrary product of vertex functions in the complex plane:

(17)P =
∏
i∈I

[
Oα′

i ,ᾱ
′
i
(zi , z̄i )

]
C

=
∏
i∈I

[
Vα′

i
(zi) × V̄ᾱ′

i
(z̄i )

]
C
,

where we have made explicit the formal factorization into holomorphic and anti-holomorphic
vertex operators.

When a subset P of I of points i ∈ P is contracted towards a common point, like the origin
here, i.e., ∀i ∈ P, zi → 0, it is well known that the limiting object is given by the so-called
“operator product expansion” (OPE), with coefficients that are singular functions of the set of
points P .

In a Gaussian free-field theory, and for a product of vertex functions, i.e., complex expo-
nentials of the field, these coefficients are precisely given by the average correlators of the set
of vertex functions located at the contracted set P . The simplest and most convenient way to
express this result is probably to use the normal ordering of operators :(· · ·): such that [42,43]

(18)
∏
i∈P

[
Oα′

i ,ᾱ
′
i
(zi , z̄i )

]
C

=
〈 ∏

i∈P

[
Oα′

i ,ᾱ
′
i
(zi , z̄i )

]〉
C

:
∏
i∈P

[
Oα′

i ,ᾱ
′
i
(zi , z̄i )

]
C
:.

In this notation, the vertex operators appearing inside :(· · ·):, when inserted in any correlation
function, are to be Wick-contracted only with operators located outside of the contracting set P .

In the complex plane, because of the form (7) of Gaussian averages (or “Wick contractions”,
or also “free-field propagators”), the holomorphic and anti-holomorphic sector contributions to
a correlation function decouple, hence factorize:〈 ∏

i∈P
Oα′

i ,ᾱ
′
i
(zi , z̄i )

〉
C

=
〈 ∏

i∈P

[
Vα′

i
(zi)V̄ᾱ′

i
(z̄i )

]〉
C

(19)=
∏

i,j∈P,i<j

(zi − zj )
2α′

iα
′
j (z̄i − z̄j )

2ᾱ′
i ᾱ

′
j .

This in turn gives the explicit form of the OPE (18).

Star OPE
Applying the above OPE result to the star-operator product

(20)Pn

({zi, z̄i}
) :=

[
Ψ0,n/2(0)

n∏
i=1

Oα′
i ,ᾱ

′
i
(zi , z̄i )

]
C

,
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Fig. 2. Curve-creating operator Ψ0,1(0) and chiral test operator Oα,ᾱ(z, z̄), with monodromy of z around base point 0.

when the set of points zi, i = 1, . . . , n all contract to the origin z = 0, yields

Pn

({zi, z̄i}
) =

∏
i

z
2α0,n/2α

′
i

i z̄
2α0,n/2ᾱ

′
i

i

∏
i<j

(zi − zj )
2α′

iα
′
j (z̄i − z̄j )

2ᾱ′
i ᾱ

′
j

(21)× :Pn

({zi, z̄i}
):,

a result that will be our main tool in the analysis of the multifractal properties of a set of critical
paths in a star configuration.

2.3. Monodromy and harmonic measure of a single path

Original operator product
Let us consider the standard case, where the star reduces to a single random curve passing

through the origin z = 0, with n = 2 arms, i.e., a set of two semi-infinite curves arising at the
origin. The associated operator is Ψ0,1 with holomorphic charge α0,1 = α+/2.

Let us place first one arbitrary “test” operator Oα′,ᾱ′(z, z̄) near the origin, so as to “measure”
the harmonic measure moments and rotation on one side of the critical curve (Fig. 2). The case
of two test operators on both sides of the path will be treated later as the peculiar n = 2 case of
the general n-star geometry. In the present geometrical situation, the relevant operator product is

(22)P(z, z̄) := [
Ψ0,1(0)Oα′,ᾱ′(z, z̄)

]
C
,

and we are interested in its rotation, i.e., monodromy properties at short-distance (Fig. 2). Its
short-distance behavior when z → 0 is a simple case of (21)

(23)P(z, z̄) = z2α0,1α
′
z̄2α0,1ᾱ

′ :P(z, z̄):,
such that the SDE coefficient (23) is explicitly

(24)P(z, z̄) ∼ zα+α′
z̄α+ᾱ′ = (zz̄)α+(α′+ᾱ′)/2

(
z

z̄

)α+(α′−ᾱ′)/2

.

Operator in path geometry
One first writes the identity in law of the operator product P (22) in C, of the path creating

vertex operator Ψ0,1 by the test operator, to the same test operator but now in presence of the
random path S originally represented by Ψ0,1, hence to the same test operator in the complex
plane C\S slit by the curve (Fig. 3):

(25)P(z, z̄) := [
Ψ0,1(0)Oα′,ᾱ′(z, z̄)

]
C

(in law)= [
Oα′,ᾱ′(z, z̄)

]
C\S .
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Fig. 3. Illustration of the statistical identity (25) of the product of operators Ψ0,1 and Oα,ᾱ with the latter one put in
presence of the stochastic path.

Fig. 4. Conformal map of the complement C\S of the random path S in C to the exterior of the unit disk D. A mirror
image of w(z) by inversion with respect to the unit circle ∂D appears underneath the boundary.

This identity in law means that averaging within correlation functions the left-hand side over
the complex Gaussian free field (GFF), or the right-hand side over the GFF in presence of S
and over the configurations of the random path S yield the same result [34,35]. [As discussed
in [34], the precise boundary conditions on S for the geometrical random fields associated with
the complex GFF may depend on the phase of the critical system (“dilute” for simple SLE paths,
κ � 4, or “dense” for κ > 4), and are not specified here. In the holomorphic formalism, analytic
continuation in κ allows one to pass from one phase to the other.]

Conformal map
The complex plane slit by S has the topology of the disk. One introduces the Riemann uni-

formizing map z → w(z) that opens the slit S into the unit disk D centered at −i, so that w(0) = 0
(Fig. 4) [33,34]. This map naturally depends on the random path S . Under this conformal map,
vertex operators transform like primary fields, whence [39]:

(26)
[
Oα′,ᾱ′(z, z̄)

]
C\S = (

w′(z)
)h′(

w′(z)
)h̄′[

Oα′,ᾱ′
(
w(z),w(z)

)]
C\D

,

where the holomorphic and anti-holomorphic weights of operator Oα′,ᾱ′ are respectively

(27)h′ = hα′ = α′(α′ − 2α0), h̄′ = hᾱ′ = ᾱ′(ᾱ′ − 2α0),

such that

α′ = αh′ := α0 ±
√

α2
0 + h′.

Associating together the holomorphic and anti-holomorphic weights h′ and h̄′, we can write
identically

(28)
[
Oα′,ᾱ′(z, z̄)

]
C\S = ∣∣w′(z)

∣∣h′+h̄′
(

dw

dw̄
(z)

)(h′−h̄′)/2[
Oα′,ᾱ′

(
w(z),w(z)

)]
C\D

,
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where

dw

dw̄
(z) := w′(z)

w′(z)
.

The final disk configuration in [Oα′,ᾱ′(w(z),w(z) )]C\D is a boundary configuration [41],
where an image charge appears at the conformal image of point w(z) with respect to the disk
boundary, namely its image by inversion with respect to the unit circle. In the limit z → 0, since
w(0) = 0, the latter image coincides with the image with respect to the tangent line, i.e., the
complex conjugate w(z), so the same notation is kept here for simplicity. The vertex operator
with anti-holomorphic charge ᾱ′ in [Oα′,ᾱ′ ]C\D then becomes an holomorphic vertex function of
charge ᾱ′ taken at image point w(z), so that the holomorphic and anti-holomorphic sectors get
coupled [39].

SDE in the w plane
When z → 0 in the original domain, w(z) → 0 as well as w(z) → 0, so the two image points

pinch the unit circle at the origin in the w plane. The coefficient in the short-distance expansion
(SDE) of the right-hand side operator in Eq. (28) is given by the Gaussian averaged correlation:〈

Oα′,ᾱ′
(
w(z),w(z)

)〉
C\D

= (
w(z) − w(z)

)2α′ᾱ′
.

Then the short-distance expansion of Eq. (26) is

(29)
[
Oα′,ᾱ′(z, z̄)

]
C\S ∼ ∣∣w′(z)

∣∣h′+h̄′
(

dw

dw̄
(z)

)(h′−h̄′)/2(
w(z) − w(z)

)2α′ᾱ′
.

After uniformization to the w plane, since the two image points w(z) and w(z) pinch the unit
circle while staying either in the exterior or the interior of the disk, they cannot wind about the
origin w(0) = 0 indefinitely for |z| → 0, so argw(z) remains bounded, e.g.,

(30)argw(z) ∈ [−π,+π].
We conclude that w(z) − w(z) ∼ |z||w′(z)|, up to a non-winding (or non-monodromic) complex
phase factor. This finally gives the SDE (29)

(31)
[
Oα′,ᾱ′(z, z̄)

]
C\S ∼ |z|2α′ᾱ′ ∣∣w′(z)

∣∣h(dw

dw̄
(z)

)(h′−h̄′)/2

,

where the overall (harmonic measure) derivative exponent h is defined as

(32)h := h′ + h̄′ + 2α′ᾱ′.
Owing to (27), it is also

(33)h = (α′ + ᾱ′)(α′ + ᾱ′ − 2α0).

It is the weight of an operator whose conformal charge αh = α0 ±
√

α2
0 + h is just α′ + ᾱ′ (or its

conjugate):

(34)α′ + ᾱ′ = αh = α0 ±
√

α2
0 + h.

Notice also that

(35)h′ − h̄′ = (α′ − ᾱ′)(α′ + ᾱ′ − 2α0).
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Winding and uniformizing map
In the z plane, the curve S can wind or rotate indefinitely about any of its points, e.g. about

the origin 0 when z → 0, so arg z → ±∞. We are thus especially interested in the monodromy
properties of the operator Oα′,ᾱ′(z, z̄).

By analyticity of the conformal map w onto the unit disk, w(z) � w′(z)z, so that argw(z) �
argw′(z)+arg z. We just have seen in (30) that argw(z) remains bounded, so that asymptotically
arg z ∼ − argw′(z) under the conformal map.

The winding angle ϑ(z) of the Green lines of the random curve, asymptotically close to z = 0
on the curve, is given by

(36)ϑ(z) = arg z = − argw′(z) +O(1).

Therefore one can also write asymptotically

(37)ϑ(z) = − logw′(z) = − 1

2i

[
logw′(z) − logw′(z)

] = − 1

2i
log

w′(z)
w′(z)

,

so that the exponential winding is

(38)

(
z

z̄

)1/2

= eiϑ(z) �
(

w′(z)
w′(z)

)−1/2

=
(

dw

dw̄
(z)

)−1/2

,

where � here means equality within a non-winding (non-monodromic) phase factor. We there-
fore arrive at the expression for the SDE (31)

(39)
[
Oα′,ᾱ′(z, z̄)

]
C\S ∼ |z|2α′ᾱ′ ∣∣w′(z)

∣∣he−i(h′−h̄′)ϑ(z).

Mixed moments
Let us now return to the original OPE (22), (23). We can rewrite (23), (24) as a complex

scaling

(40)P(z, z̄) = [
Ψ0,1(0)Oα′,ᾱ′(z, z̄)

]
C

∼ |z|α+(α′+ᾱ′)eiα+(α′−ᾱ′) arg z.

Because of the identity in law (25), identifying (40) and the short-distance expansion (39) in the
transformed slit domain yields the equivalence

(41)
∣∣w′(z)

∣∣he−i[h′−h̄′+α+(α′−ᾱ′)]ϑ(z) ∼ |z|α+(α′+ᾱ′)−2α′ᾱ′
.

This scaling equivalence is an SDE result, which can be interpreted as describing typical statisti-
cal behavior, also expected to hold true in a weaker form after averaging over the configurations
of the stochastic path S :

(42)≺∣∣w′(z)
∣∣he−isϑ(z)� ∼ |z|x,

where

(43)s := h′ − h̄′ + α+(α′ − ᾱ′),
(44)x := α+(α′ + ᾱ′) − 2α′ᾱ′.

Let us now express exponent x := x(h, is) solely in terms of weight h and winding conjugate
parameter s. Using (33), (34) and (35) we have

(45)s = (α′ − ᾱ′)(α+ + α′ + ᾱ′ − 2α0) = (α′ − ᾱ′)(α+ + αh − 2α0),
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Fig. 5. Conformal map of the complement C\S3 of the random 3-star S3 in C to the exterior of the unit disk D. Three
mirror images of points w(zi ), i = 1,2,3, appear by inversion with respect to the unit circle ∂D.

(46)x = α+αh − 2α′ᾱ′.

We can further write trivially

4α′ᾱ′ = (α′ + ᾱ′)2 − (α′ − ᾱ′)2 = α2
h − (α′ − ᾱ′)2,

to eliminate α′ − ᾱ′ in (45) and (46)

(47)α′ − ᾱ′ = p

α+ + αh − 2α0
,

(48)x(h, is) = α+αh − 1

2
α2

h + 1

2

s2

(α+ + αh − 2α0)2
.

To get the mixed harmonic measure-rotation exponents one has first to analytically continue s:
s = −ip in (42) so that

(49)≺∣∣w′(z)
∣∣he−pϑ(z)� ∼ |z|x(h,p),

with now

(50)x(h,p) = α+αh − 1

2
α2

h − 1

2

p2

(α+ + αh − 2α0)2
.

Finally, one has to choose the value of αh that vanishes with h, namely the “dilute phase” or
simple SLE path one, where κ � 4 and α0 � 0 (see (13))

(51)αh = α0 +
√

α2
0 + h.

The exponent x(h,p) above is identical to the scaling exponent obtained by quantum gravity
in [27] for the hth power ω̃h(z)e−pϑ(z) of the harmonic measure ω̃ with rotation conjugate pa-
rameter p (up to a natural shift by h, due to the local scaling ω̃(z) ∼ |z||w′(z)| for the harmonic
measure ω̃(z) in a ball of radius |z|, cf. Eqs. (1), (3)). [See Section 3.]

2.4. Monodromy and harmonic measure of multiple paths

Operator product in star geometry
We first use the identity in law of the star-operator product (20) with the operator product of

the test vertex operators in presence of the stochastic star Sn in the complex plane:

(52)Pn

({zi, z̄i}
) (in law)=

[∏
i

Oα′
i ,ᾱ

′
i
(zi , zi)

]
C\Sn

.
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Conformal map
The plane slit by the star having the topology of the disk, a conformal map w(z) transforms

the open set C\Sn into the exterior of the unit disk D [34]. The vertex operator product Pn (52)
in presence of Sn is transformed, according to primary operator rules, as:

Pn =
[∏

i

Oα′
i ,ᾱ

′
i
(zi , zi)

]
C\Sn

(53)=
∏
i

(
w′(zi)

)h′
i
(
w′(zi)

)h̄′
i

[∏
i

Oα′
i ,ᾱ

′
i

(
w(zi),w(zi)

)]
C\D

.

Associating for each i the holomorphic and anti-holomorphic weights h′
i and h̄′

i , we can write it
identically

(54)Pn =
∏
i

∣∣w′(zi)
∣∣h′

i+h̄′
i

(
dw

dw̄
(zi)

)(h′
i−h̄′

i )/2[∏
i

Oα′
i ,ᾱ

′
i

(
w(zi),w(zi)

)]
C\D

.

Short-distance expansion
Now let all points converge to the origin in the original z plane, zi → 0, ∀i = 1, . . . , n. As in

Section 2.3 above, in the disk geometry, the operators on the right-hand side of (54) are boundary
operators, each of them made of a pair of holomorphic vertex operators taken at w(zi) and at
its inverted mirror image with respect with the unit circle (Fig. 5). When zi → 0, each image
coincides with the local complex conjugate w(zi) with respect to the local tangent to the unit
circle, so we keep the same notation (a slight abuse).

As usual, the original anti-holomorphic operators with charges ᾱ′
i now become holomorphic

vertex operators located at points w(zi), and get coupled to the original holomorphic vertex oper-
ators with charges α′

i located at points w(zi) [39]. Under the contraction zi → 0, ∀i = 1, . . . , n,
the SDE of the transformed operator product on the right-hand side of (54) therefore scales as
the Gaussian free-field average taken at all pairs of points and images [34]:〈∏

i

Oα′
i ,ᾱ

′
i

(
w(zi),w(zi)

)〉
C\D

(55)=
∏
i

(
w(zi) − w(zi)

)2α′
i ᾱ

′
i

(56)×
∏
i<j

(
w(zi) − w(zj )

)2α′
iα

′
j
(
w(zi) − w(zj )

)2ᾱ′
i ᾱ

′
j
∏
i 
=j

(
w(zi) − w(zj )

)2α′
i ᾱ

′
j .

Among all these factors, the diagonal (i) terms give the short-distance behavior. The i 
= j terms
are finite in the disk geometry, or give subleading contributions for configurations of the star in
which a pair of points (zi, zj ) lie in the same sector, since the relative affixes w(zi) − w(zj ),
w(zi) − w(zj ), w(zi) − w(zj ) then tend to zero. The short-distance behavior of the operator
product (54) is thus

Pn ∼
∏
i

∣∣w′(zi)
∣∣h′

i+h̄′
i

(
dw

dw̄
(zi)

)(h′
i−h̄′

i )/2(
w(zi) − w(zi)

)2α′
i ᾱ

′
i .

When zi → 0, the transformed complex coordinate w(zi) and its image w(zi) pinch the unit
circle, so that w(zi) → w(zi) while the winding angle argw(zi) stays bounded; whence we can
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simply take: w(zi) − w(zi) ∼ |zi ||w′(zi)|, up to a non-monodromic complex phase factor. This
gives the final short-distance behavior of (54)

(57)Pn ∼
∏
i

|zi |2α′
i ᾱ

′
i

∣∣w′(zi)
∣∣h′

i+h̄′
i+2α′

i ᾱ
′
i

(
dw

dw̄
(zi)

)(h′
i−h̄′

i )/2

.

Hence the following exponents appear for the harmonic measure derivative terms:

(58)hi := h′
i + h̄′

i + 2α′
i ᾱ

′
i = (α′

i + ᾱ′
i )(α

′
i + ᾱ′

i − 2α0),

which are the conformal weights of operators whose conformal charges simply result from the
addition of holomorphic and anti-holomorphic charges

αhi
= α0 +

√
α2

0 + hi = α′
i + ᾱ′

i .

Windings and uniformizing map
Let us now return to the SDE (21) in the original z plane

(59)Pn

({zi, z̄i}
) ∼

∏
i

z
2α0,n/2α

′
i

i z̄
2α0,n/2ᾱ

′
i

i

∏
i<j

(zi − zj )
2α′

iα
′
j (z̄i − z̄j )

2ᾱ′
i ᾱ

′
j

and, as in Eq. (24), let us separate the complex modulus and argument parts, by rewriting it as:

Pn

({zi, z̄i}
) ∼

∏
i

|zi |2α0,n/2(α
′
i+ᾱ′

i )

(
zi

z̄i

)α0,n/2(α
′
i−ᾱ′

i )

(60)×
∏
i<j

|zi − zj |2α′
iα

′
j +2ᾱ′

i ᾱ
′
j

(
zi − zj

z̄i − z̄j

)α′
iα

′
j −ᾱ′

i ᾱ
′
j

.

We are interested in the monodromy properties of expression (60) when all points in their
own sectors converge to the star apex z = 0 while avoiding touching the star, which can wind
indefinitely about its origin. Let us then introduce a common scaling |z| for all distances |zi | to
the star apex, as well as a common asymptotic winding angle ϑ(z) for all arguments arg zi :

(61)zi = |z|eiϑ(z)ζi, arg zi = ϑ(z) + arg ζi,

where all moduli |ζi | and arguments arg ζi remain bounded when |z| → 0. Since trivially

(62)(zi/z̄i)
1/2 = eiϑ(z)(ζi/ζ̄i )

1/2,

the short-distance expansion (60) obeys the simple identity

Pn

({zi, z̄i}
) = |z|2α0,n/2

∑
i (α

′
i+ᾱ′

i )+
∑

i<j (2α′
iα

′
j +2ᾱ′

i ᾱ
′
j )

× e
iϑ(z)[2α0,n/2

∑
i (α

′
i−ᾱ′

i )+2
∑

i<j (α′
iα

′
j −ᾱ′

i ᾱ
′
j )]

(63)× Pn

({ζi, ζ̄i}
)
.

Let us now consider the geometrical setting in the transformed w-plane. Since all arguments
argw(zi) stay bounded there, we have for zi → 0, as in Eq. (36), argw′(zi) = − arg zi +O(1),
so that, as in (38)

(64)

(
zi

z̄i

)1/2

�
(

dw

dw̄
(zi)

)−1/2

.
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Identity (62) then yields immediately the common asymptotic behavior for all i

(65)∀i,

(
dw

dw̄
(zi)

)−1/2

� eiϑ(z),

in terms of the unique rotation angle ϑ(z) (61), and up to non-monodromic phase factors. Ap-
plying this to the SDE result (57) gives the asymptotic formula

(66)Pn ∼ |z|2
∑

i α′
i ᾱ

′
i e−iϑ(z)

∑
i (h

′
i−h̄′

i )
∏
i

∣∣w′(zi)
∣∣hi .

Multiple moments and rotation
Because of the identity in law (52), we can now identify expressions (63) and (66) and get

the fundamental scaling formula for the multiple harmonic measure factors and (indefinitely)
rotating phase factor

e
−iϑ(z)[∑i (h

′
i−h̄′

i )+2α0,n/2
∑

i (α
′
i−ᾱ′

i )+2
∑

i<j (α′
iα

′
j −ᾱ′

i ᾱ
′
j )] ×

∏
i

∣∣w′(zi)
∣∣hi

(67)∼ |z|2α0,n/2
∑

i (α
′
i+ᾱ′

i )+
∑

i<j (2α′
iα

′
j +2ᾱ′

i ᾱ
′
j )−∑

i 2α′
i ᾱ

′
i .

We obtained this scaling relation from a short-distance operator product expansion, which yields
the leading (typical) scaling behaviour of the product of harmonic measure factors and rotation
phase factor. It can naturally be expected to also give the weaker result on the statistical average
≺ · · · � of the same quantity over the configurations of the multiple random paths of star Sn:

(68)≺
∏
i

∣∣w′(zi)
∣∣hi × e−iϑs� ∼ |z|x({hi };is),

with the parametric representation in terms of holomorphic and anti-holomorphic charges

(69)hi := h′
i + h̄′

i + 2α′
i ᾱ

′
i ,

(70)h′
i = α′

i (α
′
i − 2α0); h̄′

i = ᾱ′
i (ᾱ

′
i − 2α0),

(71)s :=
∑

i

(h′
i − h̄′

i ) + 2α0,n/2

∑
i

(α′
i − ᾱ′

i ) + 2
∑
i<j

(α′
iα

′
j − ᾱ′

i ᾱ
′
j ),

(72)x := 2α0,n/2

∑
i

(α′
i + ᾱ′

i ) +
∑
i<j

(2α′
iα

′
j + 2ᾱ′

i ᾱ
′
j ) −

∑
i

2α′
i ᾱ

′
i .

It remains to find the explicit expression of the scaling exponent x := x({hi}; is) in terms of the
set of weights hi and the Fourier variable s conjugate to rotation ϑ . Let us introduce the notations

hα′ = α′(α′ − 2α0), hᾱ′ = ᾱ′(ᾱ′ − 2α0),

α′ :=
∑

i

α′
i , ᾱ′ :=

∑
i

ᾱ′
i ,

αhi
= α′

i + ᾱ′
i ,

α{h} := α′ + ᾱ′ =
∑

i

(α′
i + ᾱ′

i ) =
∑

i

αhi
.

A little bit of algebra first shows that s (71) can be written in the compact form



Author's personal copy

B. Duplantier, I.A. Binder / Nuclear Physics B 802 [FS] (2008) 494–513 509

s = h∑
i α′

i
+ 2α0,n/2

∑
i

α′
i − h∑

i ᾱ′
i
− 2α0,n/2

∑
i

ᾱ′
i

= hα′ − hᾱ′ + 2α0,n/2(α
′ − ᾱ′)

= (α′ − ᾱ′)(α′ + ᾱ′ − 2α0 + 2α0,n/2)

(73)= (α′ − ᾱ′)(α{h} − 2α0 + 2α0,n/2).

One can also check that the exponent x (72) can be written in the compact form

x = 2α0,n/2

∑
i

αhi
+

(∑
i

αhi

)2

−
∑

i

α2
hi

− 2α′ᾱ′

(74)= 2α0,n/2α{h} + α2{h} −
∑

i

α2
hi

− 2α′ᾱ′.

Note that after this compaction of formulae, the expressions (73) and (74) are similar to expres-
sions (45) and (46). We therefore eliminate α′ − ᾱ′ in the same way as above and arrive at a
formula similar to (47) and (48)

(75)α′ − ᾱ′ = s

α{h} − 2α0 + 2α0,n/2
,

(76)x
({hi}; is

) = 2α0,n/2α{h} + 1

2
α2{h} −

∑
i

α2
hi

+ 1

2

s2

(α{h} − 2α0 + 2α0,n/2)2
,

where we recall that α{h} = ∑
i αhi

, αhi
= α0 + √

α0 + hi , hence exponent x has now an explicit
form in terms of the set of weights {hi} and of s.

It remains to analytically continue s into s = −ip to get the expectation of the multiple har-
monic measure moments and Laplace transform of the rotation:

(77)≺
∏
i

∣∣w′(zi)
∣∣hi × e−pϑ� ∼ |z|x({hi };p),

(78)x
({hi};p

) = 2α0,n/2α{h} + 1

2
α2{h} −

∑
i

α2
hi

− 1

2

p2

(α{h} − 2α0 + 2α0,n/2)2
.

The CG formula (78) for p = 0 coincides naturally with the result found in Ref. [34].

3. Comparison to quantum gravity results

In previous work [29] we introduced for SLEκ the KPZ relation

h = Uκ (�) := 1

4
�(κ� + 4 − κ)

between conformal weights � in a fluctuating metric with a conformal factor given by a Gaussian
free field (two-dimensional “quantum gravity” (QG)) and conformal weights h in the complex
plane. Its inverse reads

� = U−1
κ (h) = 1

2κ

√
16κh + (κ − 4)2 + 1

2

(
1 − 4

κ

)
.
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Using (13) and (51) we identify

(79)αh =
√

κ

2
U−1

κ (h).

The CG results above can be written as

x
({hi};p

) = x
({hi};0

) − κ

2

p2

L2{h}
,

L{h} := √
κ(α{h} − 2α0 + 2α0,n/2),

(80)x
({hi};0

) = 2α0,n/2α{h} + 1

2
α2{h} −

∑
i

α2
hi

.

Using (79) we find their equivalent quantum gravity expressions [29]

(81)x
({hi};p

) = x
({hi};0

) − κ

2

p2

L2{h}
,

(82)L{h} = κ

2

∑
i

U−1
κ (hi) + n,

(83)x
({hi};0

) +
∑

i

hi = 2Uκ

[
1

2

(
2

κ
L{h} + 1 − 4

κ

)]

(84)− 2Uκ

[
1

2

(
2

κ
n + 1 − 4

κ

)]
.

[As seen in (4), the term
∑

i hi simply comes from the passage from derivative moments to
harmonic measure ones.]

Result (50) for the multifractal exponent x(h,p) of a single-sided SLE simply corresponds to
n = 2 and (h1, h2) = (h,0) in QG formulae (81)–(84).

The interpretation of these formulae is quite clear:

• Eq. (81) is the Coulomb gas formula obtained a long time ago for the exponent governing
the winding angle distribution of a star made of a number L{h} of random paths (SLEs) [27,
29,30];

• L{h} (82) represents, in a star topology, the effective number of SLEs that are exactly equiva-
lent through QG to a collection of hi , i = 1, . . . , n, Brownian paths (which represent the set
of powers hi of the harmonic measure), in addition to the n original SLEs [28,29];

• The scaling dimension (83) is the result obtained through QG construction rules for (twice)
the conformal weight in C of a random star made precisely of this effective number L{h}
of SLEs, while (84) is (twice) the weight of the original n-SLE star without the auxiliary
harmonic Brownian paths. Eq. (83) is therefore also exactly (twice) the conformal weight
hα = α(α − 2α0) corresponding to the holomorphic charge α = α0,L{h}/2 of the curve-
creating operator Ψ0,L{h}/2, which gives the final and rather elegant CG formula for (80):

x
({hi};0

) +
∑

i

hi = 2α0,L{h}/2(α0,L{h}/2 − 2α0) − 2α0,n/2(α0,n/2 − 2α0).
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Conclusion
Results (81)–(84) can be obtained by quantum gravity construction rules almost immediately,

and have a natural interpretation in that formalism. As we saw, they can also be recovered un-
der the form (78) in the fully developed Coulomb gas and conformal field theory approach,
but though the latter is quite interesting, it also appears to be significantly more comber-
some.

Its most important aspect is probably the renewed suggestion that a systematic yet rigorous
representation of the stochastic properties of SLEs via a Coulomb gas driven by a Gaussian
free field must exist [44], mimicking the (heuristic) physics CG approach’s long-established
predictive power. Let us finally mention that the mixed multifractal moments, introduced here
to study the mixed harmonic measure-rotation spectrum of critical random paths, are amenable
to an approach using only the Stochastic Loewner Evolution, that should allow one to establish
rigorously the present results [31].
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