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Abstract. There is a natural conjecture that the universal bounds for the di-
mension spectrum of harmonic measure are the same for simply connected and
for non-simply connected domains in the plane. Because of the close relation
to conformal mapping theory, the simply connected case is much better un-
derstood, and proving the above statement would give new results concerning
the properties of harmonic measure in the general case.

We establish the conjecture in the category of domains bounded by poly-
nomial Julia sets. The idea is to consider the coefficients of the dynamical
zeta-function as subharmonic functions on a slice of Teichmüller’s space of the
polynomial, and then to apply the maximum principle.

1. Dimension spectrum of harmonic measure

In this paper we discuss some properties of harmonic measure in the complex
plane. For a domain Ω ⊂ Ĉ and a point a ∈ Ω, let ω = ωa denote the harmonic
measure of Ω evaluated at a. The measure ωa can be defined, for instance, as the
hitting distribution of a Brownian motion started at a: if e ⊂ ∂Ω, then ωa(e) is the
probability that a random Brownian path first hits the boundary at a point of e.
Much work has been devoted to describing dimensional properties of ω when the

domain is as general as possible. In particular, Jones and Wolff [7] proved that no
matter what the domain Ω is, harmonic measure is concentrated on a Borel set of
Hausdorff dimension at most one; in other words,

dimω ≤ 1 for all plane domains. (1.1)

We are interested in finding similar (but stronger) universal estimates involving the
dimension spectrum of ω.

1.1. Universal spectrum. For every positive α, we denote

f+ω (α) = dim{αω(z) ≤ α},
where αω(z) is the lower pointwise dimension of ω:

αω(z) = lim inf
δ→0

logωB(z, δ)
log δ

.

B(z, δ) is a general notation for the disc with center z and radius δ.
The universal dimension spectrum is the function

Φ(α) = sup
ω

f+ω (α), (1.2)

where the supremum is taken over harmonic measures of all planar domains.
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We would like to compare Φ(α) with the corresponding spectrum defined for
arbitrary simply connected domains in the plane:

Φsc(α) = sup{f+ω (α) : Ω is simply connected}.
Because of the close relation to conformal mapping theory, the simply connected
case is much better understood and more information concerning dimension spec-
trum is available. Harmonic measure of a simply connected domain is the image of
the Lebesgue measure under the boundary correspondence given by the Riemann
map, and estimates of the Riemann map derivative control the boundary distortion.
For example, an elementary estimate of the integral means of the derivative

implies the inequality

Φsc(α) ≤ α− c(α− 1)2, (0 < α ≤ 2), (1.3)

with some positive constant c, see (1.14) and Lemma 3 below. This proves the
statement

dimω = 1 for simply connected domains. (1.4)

Indeed, from the definition of dimension spectrum it follows that

α = dimω ⇒ f+ω (α) = α.

On the other hand, by (1.3) we have f+ω (α) �= α if α �= 1. The estimate (1.3) is in
fact a bit stronger than the dimension result; the relation between (1.3) and (1.4)
is basically the same as the relation between the central limit theorem and the law
of large numbers in probability theory.
Comparing the statements (1.1) and (1.4), it is natural to ask whether estimates

like (1.3) extend to general, non-simply connected domains. We conjecture that

Φ(α) ≤ α− c(α− 1)2, (1 ≤ α ≤ 2), (1.5)

which is of course stronger than (1.1). More generally, we state the following

Conjecture. For all α ≥ 1, we have

Φ(α) = Φsc(α). (1.6)

It is easy to see that (1.6) is false if α < 1, for the universal spectrum is trivial
in this case,

Φ(α) ≡ α, (α ≤ 1),
but the spectrum Φsc(α) is not, see (1.3). We refer to [13] for further discussion of
the universal spectrum and related topics.
The goal of this work is to give some partial justification of the above conjecture.

1.2. Fractal approximation. A proof of (1.5) that would be based on traditional
methods of potential theory (as, for example, in [7]) seems to be out of reach,
let alone a proof of the conjecture. We propose to apply methods of conformal
dynamics, and to this end we first restate the conjecture using the idea of fractal
approximation.
According to [4] and [13], one can replace the supremum in the definition of the

universal dimension spectrum (1.2) with the one taken over harmonic measures on
(conformally) self-similar boundaries:

Φ(α) = sup{f+ω (α) : ∂Ω is a conformal Cantor set}. (1.7)
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A set J ⊂ C is said to be a conformal Cantor set if it is generated by some
analytic map of the form

F :
d⋃

j=1

Dj → D, (1.8)

where {Dj} is a finite collection of open topological discs such that the closures D̄j

are pairwise disjoint and sit inside a simply connected domain D. It is also required
that the restriction of F to each Dj be a bijection Dj → D.
If J = ∂Ω is a conformal Cantor set, then we have

f+ω (α) = sup{fω(α′) : α′ ≤ α},
where

fω(α) = dim
{

z ∈ J : lim
δ→0

logωB(z, δ)
log δ

= α

}
.

To prove the conjecture it is therefore sufficient to show that the inequality

fω(α) ≤ Φsc(α), (α ≥ 1)
holds for every conformal Cantor set.
We can now state our main result. We say that J is a polynomial Cantor set if

the map F in (1.8) extends to a polynomial of degree d. In other words, J is the
usual Julia set of a polynomial such that the orbits of all critical points escape to
infinity.

Theorem A. If ω is harmonic measure on a polynomial Cantor set, then

fω(α) ≤ Φsc(α), (α ≥ 1). (1.9)

We believe that a ”polynomial” version of (1.7) should be true, i.e. to compute
the universal spectrum it should be enough to only consider polynomial Cantor sets.
The conjecture would then follow from Theorem A. In this respect, let us mention
that the dimension results (1.4) and (1.1) were first discovered for polynomial Julia
sets, see [15]. Also compare [12] and [20].

1.3. Pressure function. For a polynomial F , let ΩF denote the basin of attraction
to infinity,

ΩF = {z : Fnz →∞},
so that JF = ∂ΩF is the Julia set of F . The harmonic measure ω∞ of ΩF is
the measure of maximal entropy with respect to F . We will apply some standard
technique of ergodic theory to rewrite (1.9) is a more convenient form.
The pressure function of a polynomial of degree d is defined by the formula

PF (t) = lim sup
n→∞

1
n
logd

∑
z∈F−nz0

|F ′
n(z)|−t, (1.10)

where F ′
n denotes the derivative of the n-th iterate of F , and z0 ∈ ΩF is some point

not in the orbit of the critical set. The limit (1.10) does not depend on the choice
of z0. The following two assertions are well known.

Lemma 1. If J = JF is a polynomial Cantor set, then

fω(α) = inf
t≥0

[t+ αPF (t)], (α ≥ 1). (1.11)
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Lemma 2. If F is a polynomial with connected Julia set, then

PF (t) = β(t) − t+ 1,

where β(t) is the integral means spectrum of ΩF .

By definition, the integral means spectrum βΩ(t) of a simply connected domain
Ω is the function

βΩ(t) = lim sup
r→1

∫
|z|=r

log |ϕ′(z)| |dz|
| log(1 − r)| , (t ∈ R),

where ϕ is a Riemann map taking the unit disc onto Ω.
We define the universal integral means spectrum

B(t) = sup
Ω

βΩ(t),

by taking supremum over domains containing∞. The following fact was established
in [13].

Lemma 3. If we denote

Π(t) = B(t)− t+ 1, (1.12)

then

Φsc(α) = inf
t≥0

[t+ αΠ(t)], (α ≥ 1). (1.13)

The reason for (1.13) to be valid is that relations similar to (1.11) hold for all
domains with self-similar boundaries, and by ”fractal approximation” the same is
true on the level of universal bounds.
Let us mention at this point that by Lemma 3, the inequality (1.3) we discussed

earlier is a consequence of the well-known estimate

B(t) ≤ Ct2, (|t| ≤ 1). (1.14)

From Lemma 2 and (1.12), it follows that

JF is connected ⇒ PF (t) ≤ Π(t). (1.15)

We will extend the latter inequality to disconnected Julia sets and show that if
t ≥ 0, then

JF is a polynomial Cantor set ⇒ PF (t) ≤ Π(t). (1.16)

This will complete the proof of Theorem A: we obtain (1.9) from Lemma 1 and
Lemma 3 by applying the Legendre transform to the both sides of the inequality
in (1.16).

1.4. Two results in polynomial dynamics. The verification of (1.16) follows a
natural strategy. Given a polynomial F with all critical points escaping to infinity,
we use a construction due to Branner and Hubbard [2] to embed F in a holomorphic
polynomial family

λ �→ Fλ, λ ∈ D := {|λ| < 1},
so that the boundary values of the family exist as polynomials with connected Julia
set. Using a subharmonicity argument, one can then extend the bound (1.15) of
the pressure function from the boundary circle to the unit disc.
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We recall the Branner-Hubbard construction in Section 2; see also [16] for an in-
terpretation in terms of Teichmüller’s spaces. In the case of quadratic polynomials,
we can simply take

Fλ(z) = z2 + c(λ),

where λ �→ c(λ) is a universal covering map of the complement C \ M of the
Mandelbrot setM.
It is important that almost all limit polynomials have ”nice” ergodic properties.

For instance, it is known from [6] and [23] that almost every point on the boundary
of the Mandelbrot set is a Collet-Eckmann polynomial. The following weaker state-
ment, which goes back to Douady [5] in the quadratic case, will be sufficient for
our argument. (The method of [23] can actually be extended to give ”topological”
Collet-Eckmann condition in Theorem B.)

Theorem B. Let F be a polynomial with all critical points escaping to infinity,
and let {Fλ} be its Branner-Hubbard family. Then the following is true for almost
every point ζ ∈ ∂D. For every z ∈ C, there exists a limit

Fζ(z) = lim
r→1−

Frζ(z),

and Fζ is a polynomial with connected Julia set and no non-repelling cycles.

This theorem will be used in combination with another technical result. If we
consider the pressure as a function on the parameter space of a Branner-Hubbard
family, then it is not immediately clear how to apply the maximum principle because
there are poles in the sum ∑

z∈F−nz0

|F ′
n(z)|−t

of the definition (1.10). A way out of this difficulty will be to work with a version
of the pressure function that involves multipliers of periodic points. Let us denote

Zn(F, t) =
∑

a∈Fix(Fn)

|F ′
n(a)|−t,

see [21] for the connection with dynamical zeta-function. It is well known that if F
is a hyperbolic polynomial, then we have

PF (t) = lim
n→∞

1
n
logd Zn(F, t). (1.17)

Theorem C. If a polynomial F of degree d has connected Julia set and has no
non-repelling cycles, then

PF (t) ≥ lim sup
n→∞

1
n
logd Zn(F, t).
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1.5. Proof of Theorem A (assuming Theorems B and C). As we mentioned,
it is sufficient to show that if F is a polynomial with all critical points escaping to
infinity and if t ≥ 0, then

PF (t) ≤ Π(t). (1.18)

Let {Fλ} be the Branner-Hubbard family with F0 = F . Consider the functions

sn(λ) =
1
n
logd Zn(Fλ, t), (λ ∈ D).

Since all periodic points of each polynomial Fλ are repelling, the functions sn are
uniformly bounded. (This is the only place where we use t ≥ 0.)
For every n, the correspondence λ → Fix(Fn

λ ) is a multi-valued holomorphic
function with branching points corresponding to polynomials with parabolic cycles.
There are no such polynomials in the case under consideration, and so every periodic
point aν ∈ Fix(Fn) determines a single-valued function

λ �→ aν(λ) ∈ Fix(Fn
λ ), aν(0) = aν .

It follows that the functions sn are subharmonic in the unit disc: we have

sn =
1
n
logd

∑
ν

hν h̄ν ,

where
hν(λ) = [(Fn

λ )
′(aν(λ))]t/2

are holomorphic functions, and therefore

∆sn = const
∑ |hν |2

∑ |∂hν |2 − |
∑

h̄ν∂hν|2
(
∑ |hν |2)2 ≥ 0.

We should note that the subharmonicity of pressure-like quantities is a well-known
general principle; see [1] for a beautiful application to quasiconformal maps.
Let us also define the values

sn(ζ) =
1
n
logd Zn(Fζ , t)

for all boundary points ζ ∈ ∂D satisfying the conclusion of Theorem B. (The set
of such ζ’s has full Lebesgue measure; the polynomials Fζ have no non-repelling
cycles and their Julia sets are connected.) It is clear that sn(ζ) is a radial limit
of the function sn(λ) wherever Fζ is a radial limit of the polynomial family Fλ; in
particular, this is true for almost all ζ ∈ ∂D. Since the functions sn(λ) are bounded
and subharmonic, we have

sn(0) ≤ 1
2π

∫
∂D

sn(ζ)|dζ|. (1.19)

One the other hand, applying Theorem C and (1.16), we obtain the inequalities

lim
n→∞ s̃n(ζ) ≤ PFζ

(t) ≤ Π(t), (1.20)

where
s̃n(ζ) = sup

k≥n
sk(ζ).
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Combining (1.19) and (1.20), we prove (1.18):

PF (t) = lim
n→∞ sn(0) ≤ lim

n→∞
1
2π

∫
s̃n(ζ) |dζ|

=
1
2π

∫
lim
n→∞ s̃n(ζ) |dζ| ≤ Π(t),

where the first equality is by (1.17), and the second one follows from Lebesgue’s
convergence theorem. ✷

The rest of the paper contains the proofs of Theorem B and Theorem C. Both
proofs depend on the work of Jan Kiwi [8], [9]. We refer to [3] and [17] for general
facts concerning polynomial dynamics.

2. Branner-Hubbard families

In this section we briefly recall the Branner-Hubbard construction of wringing
complex structures, see [2], and then derive Theorem B from a result of Kiwi. We
will use the half plane

H = {γ = α+ iβ : α > 0, β ∈ R},
as a parameter space for Branner-Hubbard families {Fγ}. The map

λ(γ) =
γ − 1
γ + 1

transforms this parameter space into D, the case we considered in the first section.

2.1. Wringing complex structures. Let Γ denote the subgroup of GL(2, R)
formed by matrices

γ =
(

α 0
β 1

)
with α > 0,

which we identify with complex numbers

γ = α+ iβ ∈ H.

Γ acts on the Riemann sphere Ĉ as a group of quasiconformal homeomorphisms

Aγ(z) = z|z|γ−1, (0 �→ 0, ∞ �→ ∞). (2.1)

The Beltrami coefficient of Aγ is

µγ(z) = λ(γ)
z

z̄
,

and the corresponding Beltrami field Eγ of infinitesimal ellipses is invariant with
respect to the transformation

T : z �→ zd.

Let P = Pd denote the space of polynomials of degree d, and let S denote the
subspace of P which consists of polynomials such that the orbits of all critical points
escape to infinity. We also use the notation P∗ and S∗ for the corresponding spaces
of monic centered polynomials. Clearly, P∗ ∼= C

d−1, and if we identify equivalent
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polynomials (two polynomials are equivalent if they are conformally conjugate),
then

S/ ∼ ∼= S∗/ ∼ ∼= S∗/Zd−1,

where Zd−1 acts according to the formula P (z) �→ η̄P (ηz) with ηd−1 = 1.

Given a polynomial F ∈ S, there exists a conformal map, the extended Böttcher
function,

φ : Ω∗ → ∆∗

satisfying
T ◦ φ = φ ◦ F,

where Ω∗ is an open F -invariant set of full area measure in Ĉ and ∆∗ is an open T -
invariant set of full measure in the exterior unit disc ∆ = {|z| > 1}. It follows that
the Beltrami fields φ−1Eγ are defined almost everywhere in Ĉ, and the corresponding
family of quasiconformal homeomorphisms

R(γ, F ) : Ĉ→ Ĉ, (0, 1,∞) �→ (0, 1,∞),
is holomorphic in γ. It is shown in [2] that the equivalence class [γF ] ∈ S/ ∼ of
the polynomial

γF := R(γ, F ) ◦ F ◦R(γ, F )−1

depends only on [F ] and γ, and that the map

(γ, [F ]) �→ [γF ]

is a group action on S/ ∼.
If O ⊂ S∗/Zd−1 is an orbit of Γ, then each polynomial F1 ∈ S∗ with [F1] ∈ O

provides a uniformization of the orbit:

γ ∈ H �→ [γF1] ∈ O.

This map lifts to a map H→ P∗, which we call the Branner-Hubbard family of F1,
and for which we use the notation

γ �→ Fγ or {Fγ}γ∈H.

Note that because of the group action structure,

{Fγγ0}γ∈Γ is the Branner-Hubbard family of Fγ0 . (2.2)

The monic centered polynomials Fγ depend analytically on γ. In fact, we have

Fγ = Rγ ◦ F1 ◦R−1
γ ,

for some holomorphic family {Rγ} of quasiconformal automorphisms of Ĉ. We also
have the following equation:

φγ := Aγ ◦ φ1 ◦R−1
γ , (near ∞), (2.3)

where φγ is the Böttcher functions of Fγ satisfying φγ(z) ∼ z at infinity.

The following lemma describes the boundary behavior of the family {Fγ}.
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Lemma 1. Consider a Branner-Hubbard family

Fγ(z) = zd + ad−2(γ)zd−2 + · · ·+ a0(γ), (γ ∈ H).

The functions aj(γ) have finite angular limits aj(iβ) almost everywhere on ∂H.
The limit polynomials

Fiβ(z) = zd + ad−2(iβ)zd−2 + · · ·+ a0(iβ)

have connected Julia sets.

Proof: For a polynomial F , let GF (·) denote the Green’s function of the Julia set
JF with pole of infinity, and let m(F ) be the maximal escape rate of the critical
set:

m(F ) = max{GF (c) : c ∈ Crit(F )}.
We will write Gγ for the Green’s function of Fγ .
To prove the first statement, we need the following result of Branner and Hub-

bard [2]:

∀, > 0, the set {F ∈ P∗ : m(F ) ≤ ,} is compact. (2.4)

From (2.1) and (2.3), it follows that

Gγ ◦Rγ = αG1,

where α is the real part of γ. Since Rγ sends the critical set of F1 onto the critical
set of Fγ , we have

m(Fγ) = αm(F1). (2.5)

Applying (2.4), we see that the coefficients aj(γ) are uniformly bounded in the strip
{0 < α < 1}, and so the existence of angular limits follows from Fatou’s theorem.
The second statement of the lemma follows from (2.5) and the well-known fact

that the function m(F ) : P∗ → R is continuous. ✷

2.2. Proof of Theorem B. The rest of the argument follows Kiwi’s approach in
[8].
Let F1 be a monic centered polynomial of degree d with all critical points es-

caping to infinity, and let {Fγ} be the corresponding Branner-Hubbard family. For
simplicity, we will assume that F1 (and therefore every polynomial in the family)
is such that the critical points are simple and their orbits are disjoint. We say that
the polynomial Fγ is visible if for each critical point cj , (1 ≤ j ≤ d− 1), there are
precisely two external rays terminating at cj. In this case, let

Θj = {θ−j , θ+j } ⊂ S1 ≡ R/Z

be the set of the external arguments. The collection of the sets Θj,

Θ(Fγ) = {Θ1, . . .Θd−1},
is called the critical portrait of Fγ . Every critical portrait determines a partition
of S1 into d sets of length 1/d each. Consider the map T : S1 → S1,

T : θ �→ dθ (mod 1).

The portrait is said to be periodic if with respect to this partition, the T -itinerary
of one of the point θ±j is periodic.



10 I. BINDER, N. MAKAROV, AND S. SMIRNOV

The action of the subgroup of Γ formed by diagonal matrices determines a flow

t �→ Ftα+iβ , (t > 0), (2.6)

on the Branner-Hubbard family. This flow preserves visibility (or invisibility) of
polynomials. The flow (2.6) also preserves the critical portraits of visible polyno-
mials. For β = 0, these assertions with follow from the fact that by (2.1) and (2.3),
the homeomorphism Aγ with γ real throws the hedgehog of F1 onto the hedgehog
of Fγ . (See [11] regarding hedgehogs and disconnected Julia sets.) On the other
hand, one can assume β = 0 without loss of generality, by just choosing a different
uniformization (2.2) of the Branner-Hubbard family.

Let us parametrize the orbits of the flow (2.6) by real numbers β. It is easy to
see that only countably many orbits contain invisible polynomials.

Lemma 2. The critical portraits are aperiodic for almost all β’s.

Proof: Using the group action structure, see (2.2), it is sufficient to show that if
F1 is a visible polynomial, then there is a number ε > 0 such that for almost every
β ∈ (−ε, ε), the critical portrait of F1+iβ is aperiodic.

Let θ±j ∈ S1 be the external angles and gj the escape rates of the critical points
of F1. It is clear from (2.1) and (2.3) that for small β’s, the polynomials F1+iβ are
visible and that their external angles θ±j (β) satisfy the equation

θ±j (β) = θ±j + βgj . (2.7)

We fix j and a positive integer p, and consider the set E ⊂ (−ε, ε) of β’s such
that the itinerary of the point

ϑ = Tθ±j (β)

is periodic with period p. Let L(β) denote the element of the partition of S1

corresponding to F1+iβ such that ϑ ∈ L(β). If ε is small enough, we can find an
interval I ⊂ S1 such that

I ∩

 ⋃
β∈E

L(β)


 = ∅.

The periodicity of the itineraries implies

∀n, T npϑ �∈ I. (2.8)

By Poincare’s recurrence theorem, the set of ϑ’s satisfying (2.8) has Lebesgue mea-
sure zero , and by (2.7) the same is true for the set E. ✷

We can now complete the proof of Theorem B by referring to the following result
of Kiwi [8]:

If a sequence of visible polynomials with the same aperiodic critical portrait tends
to a polynomial, then the latter has no non-repelling cycles.
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3. Periodic cycles

In this section we prove Theorem C. The proof is preceeded by a few technical
lemmas. For the rest of the section we consider only polynomials F with connected
Julia sets and all periodic cycles repelling. We also assume that the critical points
cj of F are simple and non-preperiodic (the proof in the general case is similar).

3.1. Multiplicity of the kneading map. A point b ∈ JF is a cut point if there
are at least two external radii landing at b. Let G be a finite, forward invariant set
which consists of cut points. For a point z ∈ J , which is not in the grand orbit
O(G) of G, we denote by P (z) the component of J \G containing z. Depending on
the context, we use the same notation P (z) for the corresponding unbounded puzzle
piece, i.e. the component of the complement of external rays landing at G, see [18].
Let us number the pieces of the G-partition as P1, P2, . . . , PN . The kneading map

kneadG : J \ O(G)→ {1, . . . , N}Z+

is the function z �→ {i0(z), i1(z), . . . }, where F ν(z) ∈ Piν(z).

Lemma 1. For any ε > 0, there exists a finite, forward invariant set G such that
if n > n0(F, ε) and if a ∈ Fix(Fn) \ O(G), then

# {a′ ∈ Fix(Fn) \ O(G) : kneadG(a) = kneadG(a′)} ≤ eεn.

Proof: Given ε > 0, we choose a large number m = m(ε) to be specified later.
For simplicity of notation, let us assume that the fibers of the critical points have
pairwise disjoint orbits, in which case there is a finite, forward invariant set G̃ such
that the sets

⋃
j

P̃ (cj) and
⋃
j

m⋃
k=1

F−kcj are disjoint, (3.1)

where P̃ (·) denote the G̃-pieces. (For an explanation of this fact and for the def-
inition of fibers, see Appendix at the end of the section.) Replacing each critical
piece P̃ (cj) with components of the F−1G̃-partition, we obtain a new puzzle. Let
G denote the corresponding set, i.e.

G = G̃
⋃
j

[F−1G̃ ∩ P̃ (cj)].

The G-partition has the following (modified) Markov property (cf. [19], Section 7):
each critical puzzle piece maps onto the corresponding critical value piece by a 2-fold
branched covering, while every non-critical piece maps univalently onto a ”union”
of puzzle pieces.

A sequence {i0, . . . , in−1} is called a Markov cycle if

Pi1 ⊂ FPi0 , Pi2 ⊂ FPi1 , . . . , Pi0 ⊂ FPin−1 .

By (3.1), the number of critical indices in such a sequence does not exceed n/m.
To each periodic point z ∈ Fix(Fn) \ O(G) there corresponds the Markov cycle
{i0(z), . . . , in−1(z)}, and the Markov cycles of two periodic points are equal if and
only if the points have the same G-kneading. Thus it remains to show that the
number of points z ∈ Fix(Fn) \ O(G) with the same Markov cycle {i0, . . . , in−1}
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does not exceed C2n/m, where C is a constant independent of n. This would give
an explicit formula for m = m(ε).

To this end, let us inductively define puzzle pieces Π(k) ⊂ Pik , (0 ≤ k ≤ n− 1),
as follows:

Π(n− 1) = Pin−1 , Π(k) = F−1
ik
Π(k + 1),

where F−1
ik

denotes the preimage under the map

F : Pik → FPik ⊃ Π(k + 1).
It is clear that the puzzle piece Π(0) contains all periodic points with the given
Markov cycle.

To bound the number of n-periodic points in Π(0), we consider the sets

πΠ(k) ⊂ S1

defined as the intersection of Π(k) with the ”circle at infinity”. Each set πΠ(k)
consists of finitely many open arcs. The map

T : θ → dθ (mod 1)

takes πΠ(k) onto πΠ(k+1) homeomorphically if the index ik is non-critical, and as
a two-fold cover if ik is critical. Let C be a constant such that each set πPj has at
most C components. It follows that the number of arcs in πΠ(0) is at most C2n/m.
It is also clear that each arc in πΠ(0) has at most one T -periodic point of period
n. ✷

3.2. Cycles with close orbits. We will now use Lemma 1 to prove the following
estimate for polynomials without indifferent periodic points. We don’t know if the
estimate is true for general polynomials.

Lemma 2. For any ε > 0, there exists a positive number ρ = ρ(F, ε) such that if
n > n0(F, ε) and if a ∈ Fix(Fn), then

# {a′ ∈ Fix(Fn) : ∀i, |F i(a)− F i(a′)| ≤ ρ} ≤ eεn.

Proof: Given ε > 0, we find a finite, invariant set G according to Lemma 1. The
argument is based on the notion of the sector map τ associated with G. For each
b ∈ G, the external rays at b divide the plane into sectors. Since we assumed that
b was not a critical point, the polynomial F is a local diffeomorphism identifying
sectors S at b with sectors τS at F (b):

F (S ∩ U) ⊂ τS,

where U is some small neighborhood of b. Denote by C the total number of sectors
(considering all points of G), and fix a number m = m(ε)� C. It follows that if z
is sufficiently close to the set G, then the initial kneading segment of length m is
determined up to C choices by the sector map.

Let us now choose ρ > 0 so small that if |z − z′| < ρ, then either the points z
and z′ are in the same component of J \G, or they are both so close to the set G
that we have the situation described in the previous sentence. If the orbits of two
periodic points a and a′ are ρ-close, then their kneading sequences of length n� m
coincide except for at most n/m segments of length m, for which we have Cn/m

choices. Combining this computation with the estimate of Lemma 1, we complete
the proof. ✷
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Lemma 2 will be used in conjunction with the following statement, which is a
special case of Mañe’s lemma [14].

Lemma 3. Given ρ > 0, there is a positive number δ = δ(F, ρ) such that if n ≥ 0,
and if D is a domain such that Fn maps D univalently onto a disk B of radius 2δ,
then

diam (Fn|D)−1(1
2
B) < ρ. (3.2)

Here and below, the notation 1
2B means concentric disc of radius half the radius

of B.

3.3. Good and bad cycles. Let δ > 0. For want of a better name, we say
that a cycle A ∈ Cycle(F, n) is δ-good if there is a periodic point a ∈ A and a
topological disc D containing a such that the restriction of Fn to D is univalent
and Fn(D) = B(a, δ). Otherwise, we say that the cycle is δ-bad. The next lemma
states that for polynomials without non-repelling periodic points, most of the cycles
are ”good”.

Lemma 4. For any ε > 0, there exists a positive number δ = δ(F, ε) such that if
n > n(F, ε), then

# { δ-bad n-cycles} ≤ eεn.

Proof: Fix a large number m = m(F, ε) to be specified later. For simplicity, we will
assume that the orbits of the critical points are pairwise disjoint, and so there is a
number ρ = ρ(F,m) such that if c �= c′ are two critical points, then

dist(c, F k(c′)) > 10ρ, (0 ≤ k ≤ m). (3.3)

We can take ρ small enough so that the estimate of Lemma 2 is valid for a given ε.
Finally, we choose δ > 0 satisfying the following two conditions:

• for all x ∈ J and k ∈ [0,m], each component of the set F−kB(x, δ) has
diameter less than ρ;
• the conclusion (3.2) of Mañe’s lemma holds.

Let us estimate the number of δ-bad cycles.

Fix a cover B of the Julia set with discs of radius 2δ. Clearly, we can assume
that the concentric discs of radius δ still cover J , and that the multiplicity of the
covering is bounded by some absolute constant M . Let n � m. For each periodic
point a ∈ Fix(Fn), we select a disc B(a) ∈ B with a ∈ 1

2B(a). For i > 0, let
B−i(a) denote the component of the F−iB(a) containing the point Fn−i(a) and
define j(a) to be the smallest positive integer such that B−j(a) contains a critical
point, which we denote by c(a). Note that if j(a) > n, then the cycle of a is δ-good.

We need some further notation. Given a ∈ Fix(Fn), we define inductively a
sequence of positive integers j1, j2, . . . and a sequence of points a1 = a, a2, . . . in
the orbit of a as follows :

jk = j(ak), ak+1 = Fn−jkak.

The main observation is that

jk + jk+1 > m. (3.4)
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Indeed, if jk+ jk+1 ≤ m, then both jk and jk+1 are ≤ m. By construction, we have
diam B−jk

(ak) < ρ, and so

|ak+1 − c(ak)| < ρ.

On the other hand, the disc B(ak+1) contains the jk+1-th iterate of the critical
point c(ak+1), and therefore

|ak+1 − F jk+1c(ak+1)| < 4δ < 8ρ.

Combining the two inequalities, we get a contradiction with (3.3).

Define the schedule of a to be a finite sequence

Sch(a) = {j1(a), j2(a), . . . , jl(a)},
where l is the minimal number such that

j1 + · · ·+ jl > n.

By (3.4), we have

l ≤ 3n/m. (3.5)

We also consider the corresponding sequence of discs in the cover B, and the cor-
responding sequence of critical points:

B(a) = {B(a1), . . . , B(al)}, C(a) = {c(a1), . . . , c(al)}.
As we mentioned, for δ-bad cycles we have all jk ≤ n, and therefore

n ≤
l∑

k=1

jk ≤ 2n. (3.6)

The lemma now follows from the three observations below.

(i) The number of sequences {j1, . . . , jl} satisfying (3.4) and (3.6) is � m4n/m.

Indeed, consider the numbers j1, (j1 + j2), . . . as points of the interval [1, 2n].
Subdivide the interval into (2n)/m segments of length m. Clearly, there are at
most two points in each segment, and there are less than m2 choices to select at
most two points in any particular segment.

(ii) Consider all periodic points a ∈ Fix(Fn) with a given schedule. Then the
number of distinct sequences B(a) and C(a) does not exceed (dM)3n/m and d3n/m

respectively.
This follows from (3.5) and the fact that the disc B(ak) must contain the jk-th

iterate of a critical point, so the number of such discs is less than dM .

(iii) If two periodic points a and a′ have identical schedules and identical sequences
B(a) = B(a′) and C(a) = C(a′), then the orbits of a and a′ are ρ-close:

∀i, |F i(a1)− F i(a′
1)| ≤ ρ.

To see this, let {j1, . . . , jl} be the schedule and let B = B(a1) = B(a′
1). By

construction, the components of F−j1B containing the points Fn−j1a1 and Fn−j1a′
1

must coincide because both contain the critical point c(a1) = c(a′
1). It follows that

if n− j1 < i ≤ n, then the i-th iterates of a1 and a′
1 belong to the same component

of the corresponding preimage of B, and this component is mapped univalenly onto
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B. Since a1 and a′
1 are in

1
2B, we can apply Lemma 3 to conclude that the iterates

of a1 and a′
1 are ρ-close. Repeat this argument for all discs B(ak), k ≤ l.

From (iii) and Lemma 2, it now follows that the number of n-periodic points
with a given schedule and given B- and C-sequences is � eεn. On the other hand,
by (i) and (ii), the number of possible sequences and schedules satisfying (3.6) is
also � eεn, provided that m = m(ε) is so large that m−1 logm  ε. Thus the
number of bad cycles is � e2εn. ✷

3.4. Proof of Theorem C. Let F be a polynomial with all cycles repelling. Given
small ε, we choose ρ = ρ(F, ε) according to Lemma 1, so that the number of ρ-close
n-cycles is � eεn. Then we choose a positive number δ such that

• all but eεn n-cycles are 4δ-good, see Lemma 4;
• the conclusion (3.2) of Mañe’s lemma holds.

Fix n � 1. In each good n-cycle, we pick a point a such that Fn maps some
domain Da ! a onto B(a, 4δ) univalently. Let I denote the set of the points that
we have picked, and let II denote the set of all periodic points in the bad cycles.
Then we have

Zn(F, t) =
∑

a∈Fix(Fn)

|F ′
n(a)|−t

= n
∑
a∈I

|F ′
n(a)|−t +

∑
a∈II

|F ′
n(a)|−t

≤ n
∑
a∈I

|F ′
n(a)|−t + neεn.

To estimate the sum over I, cover the Julia set with � δ−2 discs B of radius 2δ. In
each B, fix a point zB �∈ J so that the points zB are distinct. Finally, to each a ∈ I
assign one of the discs B = B(a) such that a ∈ 1

2B(a). Note that B(a) ⊂ B(a, 3δ).

Let za denote the preimage of zB(a) under the map

Fn : Da → B(a, 4δ) ⊃ B(a).

Since Fn takes both a and za inside B(a, 3δ), by Koebe’s lemma we have

|F ′
n(a)| " |F ′

n(za)|.
Note that if za = za′ for some a, a′ ∈ I, then the orbits of a and a′ are ρ-close.
Indeed, for B = B(a) = B(a′), we have

B ⊂ B(a, 4δ) ∩B(a′, 4δ),

and therefore Fn maps some domain univalently onto B with both a and a′ in the
preimage of 12B, and so we can apply (3.2).

It follows that the number of points a such that za is a given point of F−nzB is
at most eεn. We have∑

a∈I

|F ′
n(a)|−t � eεn

∑
B

∑
z∈F−n(zB)

|F ′
n(a)|−t.
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Since for each zB, we have

PF (t) = lim sup
n→∞

1
n
logd

∑
z∈F−n(zB)

|F ′
n(z)|−t,

the theorem follows.

3.5. Appendix: Fibers. Let F be a polynomial without non-repelling cycles, and
let z ∈ JF . Following Kiwi [8], consider a sequence of partitions corresponding to
the sets

Gl(F, z) := {b ∈ J \ O(z) : b is a cut point, F lb is periodic of period ≤ l}.
Let Pl(·) denote the Gl(F, z)-pieces. The connected compact set

X(z) =
⋂
l

P̄l(z) ⊂ J

is called the fiber of z. (We use the term from a paper of Schleicher [22], see also
[10].) The fibers satisfy the equation

FX(z) = X(Fz).

It is also clear that if two points z1 and z2 have infinite orbits, or if they land on
the same cycle, then the fibers X(z1) and X(z2) are disjoint or coincide.

Our proof of Lemma 1 was based on the following fact mentioned in the proof of
Lemma 13.3 of Kiwi’s thesis [8]. To make this section self-contained, we reproduce
his argument. We will denote by P ′

l (·) the puzzle pieces corresponding to F−1Gl.

Lemma 5. If z has an infinite orbit, then the fiber of z is wandering.

Proof: (i) Let us first show that if z is a periodic point, then X(z) = {z}. Since
Gl(F p, z) ⊂ Glp(F, z), then fibers of F p contain fibers of F , and so by replacing F
with an iterate, we can assume that z is fixed. For the same reason we can assume
that the landing rays at z are all fixed. The latter implies

b ∈ Fix(F ) ∩ P̄2(z) ⇒ the rays landing at b are fixed. (3.7)

Indeed, suppose b is not a landing point of some fixed ray. Then b ∈ G1, and P1(z)
is contained in some sector S at b. We have FP2(z) ⊂ P1(z) ⊂ S. Taking some
point in P2(z) close to b, we see that τS = S, where τ is the sector map, and so
the rays at b have to be fixed.
Let k − 1 be the number of critical points in the fiber X(z). For l � 1, the

map Pl(z) → P ′
l (z) extends to a polynomial-like map g of degree k. Observe

that X(z) ⊂ Jg, and since the critical points of g belong to X(z) = gX(z), the
Julia set Jg of g is connected. It remains to show that k = 1. (This would give
X(z) ⊂ Jg = {z}.) The fixed points of g belong to the set Fix(F )∩ P̄2(z). By (3.7),
for each fixed point of g there is an F -invariant (and therefore g-invariant) arc in
Jc ⊂ Jc

g tending to the fixed point.
Let Q be a degree k polynomial which is conjugate to g. It follows that there

are Q-invariant arcs in C \ JQ tending to each of k fixed points of Q. Applying the
Riemann map, we get k arc tending to k distinct points on the unit circle invariant
with respect to the map ζ �→ ζk. A contradiction.
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(ii) Suppose now that z is not preperiodic. Replacing F with some iterate, we
can reduce the problem to showing that

X(Fz) = X(z) ⇒ z ∈ Fix(F ).
Suppose X(Fz) = X(z). Then for every l, we have a map F : Pl(z)→ P ′

l (z), which
extends to a polynomial-like map with Julia set contained in P̄l(z). It follows that

∀l, P̄l(z) ∩ Fix(F ) �= ∅,
and therefore X(z) contains at least one fixed point b. Since the partition Gl(z, F )
is finer than Gl(b, F ), by (i) we have X(z) ⊂ X(b) = {b}. ✷

If the fibers of the critical points have pairwise disjoint orbits, then from Lemma
5 it follows that the statement (3.1) holds for puzzle pieces P̃ (cj) = Pl(cj) with l
sufficiently large. This is precisely the fact that we used earlier.
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