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Abstract. In this paper we consider the computational complexity of uniformizing a domain
with a given computable boundary. We give nontrivial upper and lower bounds in two settings:
when the approximation of boundary is given either as a list of pixels, or by a Turing Machine.

1. Introduction

1.1. Foreword. Computational conformal mapping is prominently featured in problems of
applied analysis and mathematical physics, as well as in engineering disciplines, such as image
processing. In this paper we address the theoretical foundations of numerically approximat-
ing the conformal mapping between two planar domains. We obtain a lower bound on the
computational complexity of an algorithm solving this problem, and show that this bound is
almost sharp. To achieve the latter, we present a very space-efficient probabilistic algorithm
for constructing such a mapping.
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1.2. Background in computational complexity theory. We present here some basic def-
initions and results from the computational complexity theory. A more comprehensive discus-
sion can be found in [Sip, Papa].

The primary goal of the computational complexity theory is to classify different computa-
tional problems into complexity classes according to their computational hardness. The basic
abstract object here is a Turing Machine which for most purposes can be thought of as a
program in any programming language.

The complexity class P includes problems that are computable in time polynomial in the
length of the input. Those are thought of as the “relatively easy” problems. Examples of
problems in P include arithmetic operations, finding a shortest path in a graph and primality
testing. “Difficult” problems, such as factoring integers or computing the optimal strategy for
playing “Go” on an n× n board, are generally thought not to be in P. Whether a problem is
in P or not is usually a good criterion in assessing the true hardness of it. By an analogy with
P one can define the class EXP of problems solvable in time 2nc

for some c on input length
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n. Playing “Go” optimally is in EXP, since we can easily enumerate all possible games and
compute an optimal path in time 2O(n2). Using a diagonalization argument, it is not hard to
see that P ( EXP (see e.g. [Sip]).

The complexity class NP contains problems that are easy to verify, but may be hard to
guess. More precisely, a predicate Q(x) is in NP, if there is a poly-time computable predicate
R(x, y), where y has length polynomial in the length of x, such that Q(x) = ∃y R(x, y). By
an exhaustive search for y one sees that NP ⊂ EXP. There is a subclass of NP called the
NP-complete problems, or NPC. Problems in NPC have the property of being the “hardest”
in NP: if one could solve any problem in NPC in polynomial time, then one could solve all
NP problems in polynomial time.

One of the most famous NP-complete problems is the satisfiability problem SAT. The
problem is the following: given a propositional formula φ(y) does it have a truth assignment
yT such that φ(yT ) = 1. An example of a problem in NP that is thought to be hard but not
NP-complete is the following. Given a pair of numbers m < n, determine whether n has a
divisor between 2 and m. This problem can be used to factor integers. It is in NP since it can
be formulated as ∃k (1 < k < m)∧ k | n. It is one of the Clay $1,000,000 questions of whether
P = NP.

A bigger class of problems is the class #P. It is the class of problems which are equivalent to
counting the number of satisfying assignments for a given propositional formula – this natural
complete problem for this class is denoted by #SAT. Obviously NP ⊂ #P, since to solve
SAT we only need to know whether the number of its satisfying assignments is bigger than 0
or not, which is easier than actually determining this number.

The next class of problems is the class PSPACE – the class of problems solvable in space
polynomial in the input size. It is easy to see that all the classes mentioned above are in
PSPACE. On the other hand, PSPACE ⊂ EXP, since a machine with p(n) memory bits
can have at most 2p(n) different configurations, and can run for at most 2p(n) steps without
getting into an infinite loop.

The class of problems solvable in logarithmic space is a class of problems that are solvable
in space O(logn) for input size n. Here the input and the output are read-only and write-only
respectively. This class is denoted by L. By the same reasoning as PSPACE ⊂ EXP, we
have L ⊂ P. A randomized version of L are the problems that can be solved correctly with
error probability < 1/n in space O(logn) and time poly(n). This class is called BPL.

Overall, we have the following chain of inclusions:

L ⊆ BPL ⊆ P ⊆ NP ⊆ #P ⊆ PSPACE ⊆ EXP.

By diagonalization, BPL 6= PSPACE, and P 6= EXP. No other separations are known.
In recent years, some progress has been made in derandomizing BPL. In other words,

showing that there is a deterministic algorithm that requires not much more computational
resources. We will need the following recent result on derandomization:

Theorem 1.1. [Nis] There exists a deterministic algorithm for the following problem:

Input: An n × n transition probability matrix M , an integer t, and a rational ε.

Output: A matrix A such that ||A−M t|| ≤ ε.
The algorithm runs in time poly(N) and space O(log2N), where N = n2 + t + ε−1.
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We will also need two circuit complexity classes. A circuit consist of inputs, logical gates,
and an output. The gates are usually NOT (one input, one output), AND, and OR. The latter
gates can either have two, or unboundedly many inputs. In the discussion below, any number
of inputs is allowed. The size of a circuit is the number of gates used. The depth of a circuit
is the number of gates on the longest path from an input to the output. It is known that any
boolean function f : {0, 1}n → {0, 1} can be computed by a circuit of size O(2n/n). It is not
hard to see that functions in P are computable by polynomial size circuits. The class AC0 is
the class of functions that are computable by a family of circuits (one for each input size), that
have constant depth and polynomial size. This is one of the very few complexity classes for
which non-diagonalization lower bounds exist. In particular it has been shown that computing
the parity of the number of 1’s in a string cannot be done in AC0 (see, for example, [FSS]).
A more general problem that cannot be done in AC0 is the majority problem MAJn: given a
string x ∈ {0, 1}n, MAJn(x) is 1 if and only if the majority of the entries in x are 1.

1.3. Computational complexity of sets. We review the definition and the basic properties
of computable sets. We refer the reader to [BW, Wei, RW, Brav] for a more comprehensive
exposition.

Intuitively, we say the time complexity of a set S is t(n) if it takes time t(n) to decide
whether to draw a pixel of size 2−n in the picture of S. Mathematically, the definition is as
follows:

Definition 1.1. A set T is said to be a 2−n-picture of a bounded set S if:
(i) S ⊂ T , and
(ii) T ⊂ B(S, 2−n) = {x ∈ R2 : |x− s| < 2−n for some s ∈ S}.

Definition 1.1 means that T is a 2−n-approximation of S with respect to the Hausdorff metric,
given by

dH(S, T ) := inf{r : S ⊂ B(T, r) and T ⊂ B(S, r)}.
Suppose we are trying to generate a picture of a set S using a union of round pixels of radius

2−n with centers at all the points of the form
(

i
2n ,

j
2n

)
, with i and j integers. In order to draw

the picture, we have to decide for each pair (i, j) whether to draw the pixel centered at
(

i
2n ,

j
2n

)

or not. We want to draw the pixel if it intersects S and to omit it if some neighborhood of the
pixel does not intersect S. Formally, we want to compute a function

(1.1) fS(n, i/2n, j/2n) =





1, B((i/2n, j/2n), 2−n) ∩ S 6= ∅
0, B((i/2n, j/2n), 2 · 2−n)∩ S = ∅
0 or 1, in all other cases

The time complexity of S is defined as follows.

Definition 1.2. A bounded set S is said to be computable in time t(n) if there is a function
f(n, •) satisfying (1.1) which runs in time t(n). We say that S is poly-time computable if there
is a polynomial p, such that S is computable in time p(n).

Computability of sets in bounded space is defined in a similar manner. There, the amount
of memory the machine is allowed to use is restricted.
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To see why this is the “right” definition, suppose we are trying to draw a set S on a computer
screen which has a 1000×1000 pixel resolution. A 2−n-zoomed in picture of S has O(22n) pixels
of size 2−n, and thus would take time O(t(n) ·22n) to compute. This quantity is exponential in
n, even if t(n) is bounded by a polynomial. But we are drawing S on a finite-resolution display,
and we will only need to draw 1000 · 1000 = 106 pixels. Hence the running time would be
O(106 · t(n)) = O(t(n)). This running time is polynomial in n if and only if t(n) is polynomial.
Hence t(n) reflects the ‘true’ cost of zooming in.

1.4. Background in complex analysis. To make the paper self-contained, we list here a
few results from complex analysis that will be used later. We refer to [Ahl, Dur, Pom] for a
more comprehensive discussion.

Let Ω ( C be a simply-connected planar domain with w ∈ Ω. Riemann Uniformization
Theorem states that there is unique conformal map ψ of Ω onto the unit disk D with ψ(w) = 0,
ψ′(0) > 0. The number r(Ω, w) = 1/ψ′(0) is called the conformal radius of Ω. Roughly
speaking, r(Ω, w) measures the size of Ω as viewed from w:

Proposition 1.2 (Koebe’s Theorem). In this notation we have

dist(w, ∂Ω) ≥ r(Ω, w)
4

.

We note the following basic monotonicity property of the conformal radius:

Lemma 1.3. If Ω1 ⊂ Ω2, w ∈ Ω1, then r(Ω1, w) ≤ r(Ω2, w).

By a theorem of Carathéodory (see e.g. [Pom]), if the boundary ∂Ω is a Jordan curve, then
the map ψ can be extended to a homeomorphism between the closure of Ω and the closed unit
disk cl(D).

Let z∗ = 1/z be the inversion of z with respect to the unit circle {|z| = 1}. We will make
use of the following particular case of the Reflection Principle:

Lemma 1.4. If J ⊂ {|z| = 1} is an open arc, and φ is a continuous map on D ∪ J which is
analytic on D, and φ(J) ⊂ {|z| = 1}, then the map Φ defined by

(1.2) Φ(z) =

{
φ(z), |z| < 1 and z ∈ J
φ∗(z∗), |z| > 1

is analytic at the domain D ∪ {|z| > 1} ∪ J.

In particular, if φ is a conformal map of D onto a domain Ω ⊂ D with Jordan boundary, and
K is an open arc, K ⊂ ∂Ω∩ {|z| = 1}, then Φ is a conformal map of D ∪ {|z| > 1} ∪ J , where
J = φ−1(K) (φ is extendable to cl(D) by Carathéodory theorem).

Let now Ω be a domain with the boundary ∂Ω consisting of finitely many Jordan curves.
Let f be a continuous function on ∂Ω. A function u : cl(Ω) → C is a solution for the Dirichlet
problem with the boundary data f , if

• u is continuous in clΩ,
• u is harmonic in Ω (∆u = ∂xxu+ ∂yyu = 0), and
• u(z) = f(z) for z ∈ ∂Ω.
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For any f such a solution exists and is unique. Moreover, there exists a unique family of
measures ωw,Ω on ∂Ω such that for any f ∈ C(∂Ω),

u(w) =
∫

∂Ω
f(z) dωw,Ω(z).

The measure ωw,Ω is called a harmonic measure. If one fixes K ⊂ ∂Ω, the function w 7→
ωw,Ω(K) is harmonic in Ω.
If Ω is simply-connected, then for a set K ⊂ ∂Ω, we have

ωw,Ω(K) =
1
2π

length(ψ(K)),

where ψ is the Riemann map of Ω onto D with ψ(w) = 0.
The Dirichlet problem can be solved probabilistically. Namely, for w ∈ Ω, let Bw(t) be the

two-dimensional Brownian motion started at w, and the exit time be defined by

T = inf{t : Bw(t) 6∈ Ω}.

Then the solution of the Dirichlet problem is given by the following formula of Kakutani (see
e.g. [GM]):

u(w) = E[f(Bw(T ))].

Note that the harmonic measure for a set K ⊂ ∂Ω is now given by

ωw,Ω(K) = P[Bw(T ) ∈ K].

We will make use of the Maximum Principle for harmonic functions (see [Ahl]):

Lemma 1.5. If u1(z) and u2(z) are two functions which are harmonic in Ω, continuous on
the whole cl(Ω), and u1(z) ≥ u2(z) for z ∈ ∂Ω, then u1(z) ≥ u2(z) for all z ∈ Ω.

An easy consequence is the Monotonicity Property of the harmonic measure (see [Pom]):

Corollary 1.6. If w ∈ Ω1 ⊂ Ω2, K ⊂ ∂Ω1 ∩ ∂Ω2, then

ωw,Ω1(K) ≤ ωw,Ω2(K).

We will also make use of a Distortion Theorem for conformal maps(see [Dur]):

Theorem 1.7. If φ is conformal in the disk {z : |z − w| < r}, then

(1.3) |φ′(w)| r2|z − w|
(r+ |z − w|)2

≤ |φ(z)− φ(w)| ≤ |φ′(w)| r2|z − w|
(r− |z − w|)2

and

(1.4) r2|φ′(w)| r− |z − w|
(r+ |z − w|)3 ≤ |φ′(z)| ≤ r2|φ′(w)| r + |z − w|

(r− |z − w|)3
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1.5. Results. In Section 2 we propose a new algorithm for computing the Riemann map. We
use the random walks solution to the general Dirichlet problem to produce a solution to the
uniformization problem. This gives an extremely space-efficient algorithm.

The formulation of the theorem will depend on how the boundary of the uniformized domain
Ω is specified for our algorithm. Since the domain Ω we consider is computable, there exists
a Turing machine M(n) which for a given n computes a function (1.1). Our algorithm may
then query M(n) for different values of (i/2n, j/2n) to ascertain whether this particular dyadic
rational point lies within one-pixel distance from ∂Ω. A formal way of saying this is that our
algorithm will have an access to an oracle for a function given by (1.1).

Theorem 1.8. There is an algorithm A that computes the uniformizing map in the following
sense.

Let Ω be a bounded simply-connected domain, and w0 ∈ Ω. ∂Ω is provided to A by an oracle
representing it in the sense of equation (1.1). Then A computes the absolute values of the
uniformizing map φ : (Ω, w0) → (D, 0) with precision 2−n in space bounded by C ·n2, and time
2O(n), where C depends only on the diameter of Ω and d(w0, ∂Ω). Furthermore, the algorithm
computes the value of φ(w) with precision 2−n as long as |φ(w)| < 1 − 2−n. Moreover, A
queries ∂Ω with precision of at most 2−O(n).

In particular, if ∂Ω is polynomial space computable in space na for some constant a ≥ 1 and
time T (n) < 2O(na), then A can be used to compute the uniformizing map in space C ·nmax(a,2)

and time 2O(na).

In the scale where the entire boundary is given to us explicitly, and not by an oracle for it,
we have the following.

Theorem 1.9. There is an algorithm A′ that computes the uniformizing map in the following
sense.

Let Ω be a bounded simply-connected domain, and w0 ∈ Ω. Suppose that for some n = 2k,
∂Ω is given to A′ with precision 1

n by O(n2) pixels. Then A′ computes the absolute values of the
uniformizing map φ : (Ω, w0) → (D, 0) within an error of O(1/n) in randomized space bounded
by O(k) and time polynomial in n = 2k (that is, by a BPL(n)-machine). Furthermore, the
algorithm computes the value of φ(w) with precision 1/n as long as |φ(w)| < 1 − 1/n.

In Section 3, we show that even if the domain we are uniformizing is very simple computa-
tionally, the complexity of the uniformization can be quite high. Moreover, it might be difficult
to compute the conformal radius of the domain.

More specifically, the following theorems are established in the Section 3.

Theorem 1.10. Suppose there is an algorithm A that given a simply-connected domain Ω with
a linear-time computable boundary and an inner radius > 1

2 and a number n computes the first
20n digits of the conformal radius r(Ω, 0), then we can use one call to A to solve any instance
of a #SAT(n)with a linear time overhead.

In other words, #P is poly-time reducible to computing the conformal radius of a set.

Theorem 1.11. Consider the problem of computing the conformal radius of a simply-connected
domain Ω, where the boundary of Ω is given with precision 1

n by an explicit collection of O(n2)
pixels.



ON THE COMPUTATIONAL COMPLEXITY OF THE RIEMANN MAPPING 7

Denote the problem of computing the conformal radius with precision 1
nc by CONF(n, nc)

Then MAJn is AC0 reducible to CONF(n, nc) for any 0 < c < 1/2.

1.6. Comparison with known results. The first constructive proof of the Riemann Uni-
formization Theorem is due to Koebe [Koebe], and dates to the early 1900’s. Formal proofs
of the constructive nature of the Theorem which follow Koebe’s argument under various com-
putability conditions on the boundary of the domain are numerous in the literature (see e.g.
[Cheng, BB, Zhou, Hert]). In particular, Zhou [Zhou] and Hertling [Hert] give constructive
proofs under computability conditions on the boundary similar to those used by us. The ques-
tion of complexity bounds on the construction was raised, in particular, in most of the works
quoted above. However, the only result known to us was announced by Chou in [Chou]. He
states that in the case when the boundary is poly(n) computable, the problem of computation
of the mapping is in EXPSPACE(n).

From the practical (that is, applied) point of view, the most computationally efficient al-
gorithm used nowadays to calculate the conformal map is the “Zipper”, invented by Marshall
(see [Mar]). The effectiveness of this algorithm was recently studied by Marshall and Rohde in
[MR]. The “Zipper”, however, falls beyond the theoretical upper bound on the complexity of
this problem, which we establish in Section 2: in the settings of the Theorem 1.8, it computes
the uniformizing map in space 2O(na) and time 2O(na), and thus belongs to the complexity
class EXP. It is reasonable to expect then, that an algorithm can be found in class PSPACE
which is more practically efficient than “Zipper”.

2. Computing the uniformization in polynomial space

Let Ω be a bounded simply-connected planar domain, diam(Ω) = 1 and let K ⊂ Ω be
a fixed compact set with smooth boundary with dist(K, ∂Ω) > 10 · 2−n. First we discuss a
probabilistic algorithm for solving the Dirichlet problem in the domain Ω \K with precision
2−n.

2.1. General Dirichlet problem. The discrete analogue of the Dirichlet problem can be
defined as follows. For H ⊂ hZ2 (h > 0), the interior of H is defined by Int(H) = {a ∈ H :
a±h, a± ih ∈ H}. The boundary of H is defined by ∂H = hZ2 \

(
Int(H)∪ Int(hZ2 \H)

)
. We

say that a function u defined on H ⊂ hZ2 is discrete harmonic if for any a ∈ Int(H) we have

u(a) = 1/4(u(a+ h) + u(a− h) + u(a+ ih) + u(a− ih)).

Let Bw
n be the standard Random Walk (cf [Spi]) on hZ2 started at w ∈ H , where H is closed

(∂H ⊂ H). Let the exit time N be defined as N = min{n : Bw
n 6∈ H}−1. Let f be a function

on ∂H . It is almost obvious that the function

u(w) = E(f(Bw
N ))

is discrete harmonic on H . This function is called the solution for the Dirichlet problem with
the boundary data f (compare to the continuous case discussion in subsection 1.4).

Let now Ω be a domain with boundary ∂Ω, f ∈ C(∂Ω). For h > 0 define Hh = Ω ∩ hZ2.
For w ∈ ∂Hh, let fh(w) = f(z), where z is one of the points on ∂Ω closest to w. uh, the
solution to the corresponding discrete Dirichlet problem, is called h-discrete solution to the
initial continuous Dirichlet problem.



8 I. BINDER, M. BRAVERMAN, M. YAMPOLSKY

We need the following easy case of the approximating property of the h-discrete solutions
(see [Spi], [Laa]).

Lemma 2.1. Let Ω be a domain, f is locally constant, and takes only 0 and 1 values, and u
is the solution of the corresponding Dirichlet problem. Let uh be the h-discrete solution. Then
if dist(w, ∂Ω)> h, then |u(w)− uh(w)| ≤ 2

√
h.

Since the exit probabilities of a random walk can be computed by a BPL(h−1) machine;
if the values of f and the boundary ∂Hh are given by an oracle, then u can be computed in
the randomized space O(− logh) and time O(h−2). Thus Lemma 2.1 immediately implies the
following statement about the solution of the general Dirichlet problem:

Lemma 2.2. There is a randomized algorithm D that computes a solution of the Dirichlet
problem in the following sense.

Let Ω be a bounded planar domain and K ⊂ Ω be a fixed compact set with smooth boundary
and dist(K, ∂Ω)> 10·2−n. Suppose that f is the function which is equal to 0 on ∂Ω and 1 on K.
Then D computes the solution of the corresponding Dirichlet problem with precision 2−n, 2−n-
away from ∂Ω ∪K in space O(n), and time 2O(n). The computation is done probabilistically,
and outputs the correct value within an error of 2−n with probability > 1

2 .
In particular, if both K and ∂Ω are computable in space na for some constant a ≥ 1 and

time T (n) < 2O(na). Then we can compute the solution of the Dirichlet problem for any point,
which is at least 2−n away from ∂Ω and K in space O(na), and time 2O(n)T (n).

2.2. Conformal radius. Let w0 ∈ Ω, and let ψ be the conformal mapping of Ω onto the unit
disk D with ψ(w0) = 0 and ψ′(w0) > 0. Assume that ∂Ω is given to us up to distance 2−n in
Hausdorff metric and that d(w0, ∂Ω) ≥ 1/2. As the first application of Lemma 2.2 let us give
an algorithm for calculating |ψ′(w0)| with precision 2−n in space O(na), and time 2O(n)T (n).
As before, Denote

w1 = w0 + e−n and K1 = B(w0, e
−2n)

Lemma 2.3. Let h1 be the solution of the following Dirichlet problem:




h1(w) = 1, |w− w0| = e−2n

h1(w) = 0, w ∈ ∂Ω
∆h1(w) = 0, w ∈ Ω \K1

Then ∣∣∣∣log |ψ′(w0)| − n

(
1 − 2h1(w1)
1 − h1(w1)

)∣∣∣∣ ≤ Cn e−n

for some absolute constant C.

Proof. By the first statement of Theorem 1.7,

(2.1) B(0, e−2n/(1 + e−2n)2ψ′(w0)) ⊂ ψ(K1) ⊂ B(0, e−2n/(1 + e−2n)2ψ′(w0))

Let B1 = ψ−1
(
B(0, e−2n(1− 3e−2n)ψ′(w0))

)
and B2 = ψ−1

(
B(0, e−2n(1 − 3e−2n)ψ′(w0))

)
.

Since 1/(1 + e−2n)2 < (1− 3e−2n) and (1 + 3e−2n) < 1/(1− e−2n)2, (2.1) implies

(2.2) B1 ⊂ K1 ⊂ B2



ON THE COMPUTATIONAL COMPLEXITY OF THE RIEMANN MAPPING 9

The functions

H1(w) =
log |ψ(w)|

−2n+ log(1 − 3e−2n) + log(ψ′(w0))
and

H2(w) =
log |ψ(w)|

−2n+ log(1 + 3e−2n) + log(ψ′(w0))
are harmonic in Ω \B1 and Ω \ B2 correspondingly, equal to 0 on ∂Ω, and equal to 1 on the
boundaries of B1 and B2 respectively. By the Maximum Principle, H1 ≤ h1 ≤ H2, or, more
explicitly,

(2.3)
log |ψ(w)|

−2n+ log(1 − 3e−2n) + log(ψ′(w0))
≤ h1(w) ≤ log |ψ(w)|

−2n+ log(1 + 3e−2n) + log(ψ′(w0))

Another application of the same distortion theorem gives

(2.4) e−n(1 − 3e−n)ψ′(w0) ≤ |ψ(w1)| ≤ e−n(1 + 3e−n)ψ′(w0).

Evaluating both sides of the inequality 2.3 at the point w1 using 2.4 gives the statement of the
lemma. �

It now follows from Lemma 2.2 that we can compute |ψ′(0)| with the same complexity
constraints as in Lemma 2.2.

2.3. The Riemann map. Let h1, K1 be as in the previous section.

Lemma 2.4. Let e−n < |w− w0|. Then
∣∣log |ψ(w)| − h1(w)(log(ψ′(w0))− 2n)

∣∣ ≤ 3 · e−n.

Proof. By the equation (2.3),

h1(w) log(1− 3e−n) ≤ log |ψ(w)| − h1(w)(log(ψ′(w0)) − 2n) ≤ h1(w) log(1 + 3e−n)

To prove the lemma it is enough to notice that h1(w) ≤ 1 and | log(1 + x)| ≤ |x|. �

Using Lemmas 2.3 and 2.2, we see that |ψ(w)| is computable with the same restrictions as in
Lemma 2.2, provided that dist(w, ∂Ω) > e−n and |w − w0| > e−n.

Now we have to compute arg
(
ψ(w)

)
. To achieve this, we introduce another Dirichlet prob-

lem. Let K2 = B(w0 + e−2n, e−4n), and let h2 be the solution of the following Dirichlet
problem: 




h2(w) = 1, |w− w0 − e−2n| = e−4n

h2(w) = 0, w ∈ ∂Ω
∆h2(w) = 0, w ∈ Ω \K2

Let

ψ̃(w) =
ψ(w)− e−2nψ′(0)
1 − ψ(w)e−2nψ′(0)

be another conformal map from Ω onto D, with w2 = ψ̃−1(0). By Distortion Theorem 1.7,

|w2 − w0 − e−2n| ≤ C · e−4n
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A

B

C(w)ψArg

(w )
2

ψ0

(w)ψ

Figure 1. Computing arg
(
ψ(w)

)

for some absolute constant C. As in Lemma 2.4,
∣∣∣log |ψ̃(w)| − h2(w) logψ′(w0) − 4n

∣∣∣ ≤ C · e−2n.

Now we use a standard formula from hyperbolic trigonometry (see [Thu])

cos argψ(w) =
coshC − coshA coshB

sinhA sinhB
,

where

A = log
1 + |ψ(w)|
1 − |ψ(w)|, B = log

1 + e−2nψ′(0)
1 − e−2nψ′(0)

, and C = log
1 + |ψ̃(w)|
1− |ψ̃(w)|

.

See Figure 1.
Note that sinhB ∼ e−2n, sinhA > e−n when |w| > e−n, coshB − 1 ∼ e−2n. Using the error

estimate in the Lemma 2.4, we obtain that the formula allows us to compute cos argψ(w) up
to e−n, provided that |ψ(w)|< 1 − e−2n.

Using the same argument for computing cos arg(ψ(w)/i), we can completely determine the
value of argφ(w).

Now we can give an algorithm which satisfies the conditions of Theorems 1.8 and 1.9.

Proof of Theorems 1.8 and 1.9. We can create a poly(n)×poly(n) matrix M representing the
transition probabilities between the poly(n) possible states of the random walk. Simulating
the random walk for t = poly(n) steps amounts to approximating M t. The required precision
is also inverse polynomial in n. By Theorem 1.1, this can be done in time polynomial in n,
and space O(log2 n), which imply Theorem 1.9. By changing the scale, and replacing n with
2n, we obtain Theorem 1.8. �
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Λa
a
1

Figure 2. Λa

3. Lower bounds on the complexity of uniformization

In this section we establish Theorems 1.10 and 1.11.
Let us first remark that, by Distortion Theorem 1.7, any algorithm computing values of the

uniformization map will also compute the conformal radius with the same precision.
Let Λa be the domain D\{|z−1| ≤ a} – the unit disk with a small bump of radius a removed

(see Figure 2).
Fix a large n ∈ N. Let now for 0 ≤ l < 2n, and let Ωl = e2πil/2n

Λ2−10n be the rotated domain
Λ2−10n . For a set L = {l1, l2, . . . , lk} with all 0 ≤ l1 < l2 . . . lk < 2n, let ΩL = Ωl1 ∩Ωl2 ∩ . . .Ωlk .
Thus ΩL is the unit disk with k relatively “spread out” bumps removed.

Theorem 3.1. For large enough n,
∣∣r(ΩL, 0)− 1 + k2−20n−1

∣∣ < 1
10

2−20n.

To prove Theorem 3.1, we estimate the conformal radius of Λa for an arbitrary a.

Lemma 3.2. The conformal radius of Λa is equal to
2 − 2a

2 − 2a+ a2
.

As a consequence we get that, for large n,

(3.1) |r(Λ2−10n) − 1 + 2−20n−1| < 2−30n+2

Proof of Lemma 3.2. Let P = C\{Im z = 0, Re z ≤ 0} be the complex plane with the negative
real axis removed.

The function

χ(z) =
(

1 − z

1 + z

)2

maps D conformally onto P , χ(0) = 1. It also maps Λa onto Λ′
b = P \ {|z| ≤ b}, where

b =
(

a

2− a

)2

.

Observe also that

h(z) =
z + b2/z − 2b

(1 − b)2

maps Λ′
b conformally onto P, with h(1) = 1, h′(1) =

1 + b

1 − b
=

2 − 2a+ a2

2 − 2a
.
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Thus the map φ0(z) = χ−1 ◦ h−1 ◦ χ(z) maps D conformally onto Λa, and the conformal
radius of Λa is equal to

r(Λa) = 1/h′(1) =
2 − 2a

2− 2a+ a2
.

�

For a set L, let φL be the conformal map of D onto ΩL with φL(0) = 0, φ′L(0) > 0 (φL is the
inverse of the uniformization map). Let L′ = (l2, l3, . . . , lk) be the set L with the first element
removed. Let g(z) = φ−1

L′ ◦ φL(z) be the conformal map of D onto

Γ = D \ φ−1
L′

(
{|z| < 1, |z − e2πil1/2n | ≤ 2−10n}

)
.

Let us also introduce two domains

Γ+ = D \ {z : |w− z| ≤ 2−10n(1− 2−4n)}
and

Γ− = D \ {z : |w − z| ≤ 2−10n(1 + 2−4n)},
where w = φ−1

L′ (1).
We will use the following property of Γ

Lemma 3.3.
Γ− ⊂ Γ ⊂ Γ+.

Let us first show how to derive Theorem 3.1 from Lemma 3.3.
By Lemma 3.3 and Lemma 1.3 (monotonicity of conformal radius),

r(Γ−) ≤ g′(0) = r(Γ) ≤ r(Γ+)

Now Lemma 3.2 implies that for large n

|r(Γ−) − 1 + 2−20n−1| < 2−24n+2, |r(Γ+)− 1 + 2−20n−1| < 2−24n+2,

and thus
|g′(0)− 1 + 2−20n−1| < 2−24n+2.

Note now that φL(z) = φL′ ◦ g(z), so r(ΩL) = g′(0)r(ΩL′). The Theorem easily follows from
this relation by induction on the size of L.
So to establish Theorem 3.1, it is enough to prove Lemma 3.3.

Proof of Lemma 3.3. Without loss of generality we can assume that l1 = 0.
Let Υ = D ∩ {|z − 2−7n+1| < 1 − 2−7n}. Note that Υ ⊂ ΩL′ , since 0 6∈ L′. Let ψ be the

conformal map of D onto Υ with ψ(0) = 0, ψ′(0) > 0.
Let K be the arc [1, eπi2−7n

]. Note that K ⊂ ∂Υ∩∂ΩL′. Let K ′ = φ−1
L′ (K). The normalized

length of K ′, |K ′|, is the harmonic measure of K in ΩL′ evaluated at zero. By monotonicity
of harmonic measure (Lemma 1.6) it is bounded above by 2−7n−1 = |K| and below by the
harmonic measure of K in Υ evaluated at zero.

So

(3.2) 2−7n−1 ≥ |K ′| ≥ |ψ−1(K)| ≥ 2−7n−1(1− 2−5n)

The same estimate applies to K ′′ = φ−1
L′ ([e−πi2−7n

, 1]).
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L'
Ωw 1

L'
ϕ

DD

Figure 3. The map φL′ and domain Υ
.

φ
L'

Figure 4. φL′ in the neighborhood of w

By the Reflection Principle 1.4, the map φL′ can be extended to a map G of the whole disk
{|z − w| < 2−7n(1 − 2−5n)} with G(w) = 1.

Using the fact that Υ ⊂ ΩL′ , we obtain

(3.3) |G′(w)| = |φL′(w)| > |ψ′(w)| > 1 − 2−7n

Now we can use the Distortion Theorem 1.7 applied to the disk {|z −w| < 2−7n(1− 2−5n)}
to see that

G({z : |w − z| ≤ 2−10n(1− 2−4n)}) ⊂ {|z − 1| < 2−10n}
and

{|z − 1| < 2−10n} ⊂ G({z : |w− z| ≤ 2−10n(1 + 2−4n)})
But this is precisely the statement of the lemma.

�

Now we are in the position to prove Theorems 1.10 and 1.11.
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Proof of Theorem 1.10. For a propositional formula Φ with n variables, let L ⊂ {0, 1, . . . , 2n −
1} be the set of numbers corresponding to its satisfying instances. Then the boundary of
ΩL is computable in linear time, given the access to Φ. Theorem 3.1 now implies that using
r(ΩL, 0) we can evaluate |L| = k, and solve the #SAT problem on Φ, which is exactly Theorem
1.10. �

Proof of Theorem 1.11. Suppose that we are given a string s of n = 2k zeros and ones. We
can view it as a set L ⊂ {0, 1, . . . , 2k − 1}. ΩL can be obtained from L by a trivial one-layered
circuit with just NOT gates. Theorem 3.1 implies that using r(ΩL, 0) with 2−O(k) precision,
we can evaluate |L| and solve the MAJn problem on s, which is exactly Theorem 1.11. �
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