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Abstract

We consider the problem of derandomizing random walks in the Euclidean space Rk. We
show that for k = 2, and in some cases in higher dimensions, such walks can be simulated in
Logspace using only poly-logarithmically many truly random bits.

As a corollary, we show that the random walk can be deterministically simulated in space
O(logn

√
log log n), where 1/n is the desired precision of the simulation.

1 Introduction

1.1 Space-bounded derandomization and the Dirichlet Problem on graphs

We are interested in derandomizing some problems that can be solved by a probabilistic log-space
Turing Machines. There are many ways to view a probabilistic log-space computation. By defi-
nition, a probabilistic space bounded TM has a special state where it can request a random bit.
It has to use its working tape if it wants to store the bits it has seen so far. If the machine M
uses S = S(n) cells on its working tape and queries at most R = R(n) random bits, it is said to
have a space/randomness complexity of (S,R). By requiring that the machine terminates in 2O(S)

steps, we can make sure that for all possible random bits the machine terminates (cf. discussion in
[Saks96]).

Denote the set of valid configurations of M by CM , |CM | = 2O(S). Denote the set of accepting
configurations (i.e. configurations where M has terminated in the accepting state) by Cacc, and
the set of rejecting configurations by Crej . Denote the initial configuration by cinit. We can
view the evaluation path of the machine M as a random process Mt where M(x)t ∈ CM is the
configuration of the computation of M on x at time t. Further, denote by T (x) = O(2S) the time
at which the computation terminates. T (x) is a random variable, and furthermore, by definition,
M(x)T (x) ∈ Cacc ∪ Crej . The “result” of the computation of M on an input x is its acceptance
probability, pacc(x) := P (M(x)T (x) ∈ Cacc). Derandomizing the machine M involves giving an
algorithm for computing pacc within some error ε, with ε usually being 2−S .

One way to present the computation of the probabilistic log-space machine M is by considering
configurations graph G of the machine. The nodes of G are CM . If a configuration U ∈ CM
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corresponds to the random bit querying state, then it is connected to two configurations, V0 and
V1, one corresponding to the configuration when the requested random bit is 0, and the other when
it is 1. If U corresponds to any other configuration, then it is connected to the unique next state V
of U , unless U ∈ Cacc ∪ Crej . There is a natural correspondence between runs of the machine and
random walks on G originating at cinit and terminating on the set Cacc∪Crej . The probability that
the random walk terminates on Cacc is exactly pacc(x). We can formulate this problem in slightly
more general terms. The name will be explained later.

Definition 1. The Directed Dirichlet Problem DirDP is defined as follows.
Input: A directed graph G, a vertex v0, a set B of vertexes, a parameter ε and a function f : B → R.
Output: Assuming all vertexes of V − B have out-degree of at least 1, the output should be the
expected value of f(b), where b is the first vertex in B that a random walk originating at v0 hits,
computed with precision ε. We denote this value by Φ(v0).

Here the “random walk” takes all the edges from a vertex v with equal probability. Note that
we do not need to worry about the representation of the function f , because it is not hard to see
that in order to estimate Φ(v0) with precision ε we only need to know f with precision Θ(ε).

From the discussion above, it is not hard to see that it follows that derandomizing DirDP is
as hard as derandomizing space-bounded machines.

Theorem 2. The following problems are (deterministic) space-O(S) reducible to each other:

• Given a probabilistic machine M running in space S = S(n) and randomness R = 2O(S), and
an input x, |x| = n, compute pacc(x) within an error of ε = 2−S.

• Solve the DirDP problem on a graph of size 2S within an error of ε = 2−S .

An equivalent view on the Dirichlet problem is a global one. Suppose that instead of considering
only one starting point v0, we consider all possible starting points. Assuming that for any initial
v the random walk originating at v eventually hits B with probability 1, we see that the function
Φ(v) satisfies the following equations:

{
Φ(v) = 1

deg(v) ·
∑

(v,u)∈E Φ(u) for v /∈ B
Φ(v) = f(v) for v ∈ B

(1)

It can be shown that under the conditions above, the equation (1) has a unique solution.
Attempts to solve DirDP, which is at least as hard as derandomizing BPSPACE(S), can now

be restricted to different classes of graphs. One restriction would be to consider the undirected
graphs, to obtain the corresponding UndirDP problem. To our knowledge, even in this case no
results better than the general space S3/2 derandomization [SZ99] are known. In this paper we
consider an important special case of the problem, where the underlying graph has a geometric
Euclidean structure.

1.2 The classical Dirichlet Problem and its derandomization

First, we describe the classical Dirichlet problem on Rk . Given a bounded domain Ω and a contin-
uous function on the boundary of Ω, f : ∂Ω → R, the goal is to find a function Φ : Ω → R that
satisfies: {

∆Φ(x) ≡
∑k

i=1
∂2Φ(x)

∂x2
i

= 0 for x ∈ Ω − ∂Ω
Φ(x) = f(x) for x ∈ ∂Ω

(2)
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This classical problem, dating back to the 1840s has numerous applications in Science and Engi-
neering (see for example [CH89])

Equation (2) can be viewed as a continuous version of equation (1) because the condition
∆Φ(x) = 0 on the interior of Ω can be shown to be equivalent to the following condition. For any
x denote by B(x, ε) the (open) ball of radius ε around x. Then for any x ∈ Ω − ∂Ω, and for any ε
such that B(x, ε) ⊂ Ω− ∂Ω, Φ(x) is equal to the average value of Φ(x) on B(x, ε). Thus, just as in
equation (1), we have that for any x, Φ(x) is equal to the average value of Φ on its “neighbors”.

Figure 1: examples of solutions to the two-dimensional Dirichlet problem with Ω a square domain,
the boundary condition f is either 1 (black) or 0 (white), the color inside Ω represents the value
of Φ. It is equal to the probability that a Brownian motion originating at a point will hit a black
segment on the boundary

As in the graph case above, Brownian motion, the continuous version of a random walk can
be used to solve the Dirichlet problem. For any x ∈ Ω − ∂Ω, denote by Bt the Brownian motion
process originating at x: B0 = x. Let the random variable T be the first time Bt hits the boundary
∂Ω. Then the solution to (2) is the expected value of f at BT :

Φ(x) = E[f(BT )].

Solutions of a Dirichlet problem are illustrated on Fig. 1.
In order to approximately solve the Dirichlet problem in practice, one would need to discretize it

first. This is possible under some mild conditions on the continuous problem, that will be discussed
in Section 2. We define a discretize grid version of the continuous Dirichlet problem in Rk.

Definition 3. Consider the subdivision of the unit cube in Rk by a grid with step 1/n. Let Ω
be a subset of the unit cube formed by a collection of small cubes in the grid. The boundary of
Ω is comprised of a finite collection C of k − 1-dimensional squares. Let the boundary condition
f : ∂Ω → R be given within a precision of n−3. f is continuous and linear on each of the squares
of the boundary. In other words, it is specified by the values it takes on each piece s ∈ C of the
boundary.

The discretize Euclidean Dirichlet problem is, given a grid point x inside Ω, to compute the
solution Φ(x) within an error of 1/n. We call this problems EucDP.

The most interesting case is for R2, because of its connections to the Riemann Mapping Problem
and to conformal geometry(see, for example, [Ahl53]). We almost completely derandomize the
problem in this case.
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Theorem 4. The EucDP over R2 is solvable by a randomized TM in space S = O(logn) using
R = O(log4n) random bits.

The randomness complexity of the machine in Theorem 4 is very low compared to the O(n)
complexity of the näıve solution. This allows us to further derandomize it while paying only a small
overhead. By using various known derandomization results, we obtain:

Corollary 5. The problem EucDP is solvable by

(a) [SZ99] a deterministic machine that uses O(logn
√

log logn) space;

(b) [Nis94] a deterministic machine that uses O(logn log logn) space and runs in poly-time;

(c) [NZ96] a deterministic logspace machine that solves the problem within an error of 1

2log1−γ n
for

any γ > 0.

As an application, one obtains a derandomized space-efficient algorithm for computing confor-
mal maps.

For a simply-connected planar domain Ω ( C with w ∈ Ω. Riemann uniformization theorem
states that there is unique conformal map ψ of Ω onto the unit disk D with ψ(w) = 0, ψ′(0) > 0. The
conformal maps are used extensively in many areas, such as solving Partial Differential Equations
[FS64], Hydrodynamics [LS73] Electrostatics [FLS89], and in computer tomography such as brain
mapping [GWCTY04].

Theorem 6. There is an algorithm A of complexity described in Corollary 5 that computes the
uniformizing map in the following sense.

Let Ω be a bounded simply-connected domain, and w0 ∈ Ω. Suppose that for some n, ∂Ω is given
to A with precision 1

n by O(n2) pixels. Then A computes the absolute value of the uniformizing
map ψ : (Ω, w) → (D, 0) within an error of O(1/n). Furthermore, the algorithm computes the value
of φ(w) with precision 1/n as long as |ψ(w)| < 1 − 1/n.

The reduction of Theorem 6 to Corollary 5 is given in [BBY07].
The rest of the paper is organized as follows. In Section 2, we discuss the discretization of the

continuous Dirichlet problem. The main lemma, Lemma 9, is proved in Section 3. The theorem
implies Theorem 4 and, using the methods of [BBY07], Theorem 6. In Section 4, we discuss the
generalization of the Theorem 4 to higher dimensions.
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2 The Dirichlet problem and Euclidean random walk

In this section we discuss the discretization of continuous Dirichlet problem. We start with the
technical result about the stability of the Dirichlet problem. Informally, it states that a slight
change in boundary and boundary data induces an insignificant change in the solution.
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Lemma 7. Let γ1, γ2 be two closed Jordan curves, dist(γ1, γ2) < 1/n3. Let f1(t), f2(t) be two
continuous functions on γ1, γ2 correspondingly with the following continuity property: if |x− y| <
1/n2, x ∈ γ1, y ∈ γ2, then |f1(x)−f2(y)| < 1/n. Let Φ1 and Φ2 be the solutions of the corresponding
Dirichlet problems. Let z be a point inside both γ1 and γ2 that is at least 1/n-away from both curves.
Then |Φ1(z)− Φ2(z)| < 2/n.

The lemma follows from the standard estimates in Geometric Function Theory (see, for example,
[Pom92]).

The lemma allows us to approximate the solution of the Dirichlet problem on a Jordan curve γ by
approximating it using a 1/n2-grid curve, and by approximating the boundary data by a continuous
piecewise-linear function on the grid-curve (see, for example, Fig. 2). Thus the continuous Dirichlet
problem, at least for domains bounded by finitely-many Jordan curves, can be solved with arbitrary
precision using EucDP

Figure 2: Discretization of the continuous Dirichlet Problem

3 Derandomizing the Dirichlet problem

Let us fix a bounded domain Ω ⊂ R2.
Let x ∈ Ω with R(x) = dist(x, ∂Ω). We define a stochastic jump point process xt inductively.

At each iteration the process jumps one half of the distance to the boundary at random direction.
More precisely, xt is defined by

x0 = x, xt = xt−1 + 1/2e2πiθtR(xt−1).

Here θ1, θ2, . . . is a sequence of independent random variables, uniformly distributed on the interval
[0, 1].

In the limit, this process can be used to solve Dirichlet problem. Specifically, the following
Kakutani’s theorem is classical.

Theorem 8. Let f be a continuous function on ∂Ω, Φ be the solution of the corresponding Dirichlet
problem. A.s. limn→∞ xn = x∞ exists, x∞ ∈ ∂Ω, and E(f(x∞)) = Φ(x).

For the proof of the theorem, see for example [GM04], Appendix G. Let us remark that the
theorem is also true for domains in Rk.

Our algorithm is based on a discretized version of Theorem 8. In a discretized world, we face the
following challenges. To create an efficient algorithm, we need to estimate the rate of convergence of
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the process {xn} to the boundary. We also need to take care of the rounding errors. An additional
technical difficulty comes from necessity of using xT for certain stopping time T instead of x∞.

To discretize the process, we fix a square grid of size n−c for sufficiently large constant c. The
process will only run on points on the grid. Note that storing the coordinates of a point requires
O(logn) space.

For a point x ∈ R2, let the snapping S(x) be one of the closest points of the grid. Note that
|x− S(x)| < n−c . Let Rd(x) be the distance from x to the (discretized) boundary of Ω computed
with precision of n−c (and requiring only O(logn) bits to store). Note that it is easy to compute
in space O(logn), since the discretized boundary is just a polygon with O(n2c) vertices.

Let us now discretize the process xt. Let Xt be the stochastic process on the grid defined by

X0 = S(x), Xt = S
(
Xt−1 + 1/2e2πiθtRd(Xt−1)

)
.

Here θ1, θ2, . . . is a sequence of independent random variables taking values 0, 1/n2c,2/n2c, . . . ,
(n2c − 1)/n2c with equal probabilities. Note that computing one iteration of Xt requires O(logn)
random bits. The process Xt is illustrated on Fig. 3.

Figure 3: illustration of the process XT . (a) one step of the process; (b) a sample path of five steps
of the process

Now let us define the stopping time T by T = min
(
min{t : Rd(Xt) < n−3}, B log3 n

)
, for a

sufficiently large constant B. In other words, we stop the process once we are sufficiently close to
the boundary but never after the time B log3 n.

By the definition of T and our discussion about the complexity of computing each jump, XT

is computable in space O(logn) using O(log4 n) random bits. We claim that the values f(XT )
computed with precision n−2 can be used to approximate the solution of the continuous Dirichlet
problem.

Note that the boundary data f from EucDP satisfies the following condition
(∗): If x and y are points in ∂Ω with |x− y| < n−3, then |f(x)− f(y)| < An−2 for some constant
A.

If f is a continuous function satisfying (∗), then we can extend it to a grid point x ∈ Ω with
Rd(x) < n−3 by assigning f(x) to be equal to f(y), where y is a closest to x point of ∂Ω. By (∗),
it is well defined up to a O(n−2). For other points of the grid we take f(x) = 0.
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Lemma 9. Let f be a continuous function on ∂Ω satisfying (*). Let Φ be the solution of the
Dirichlet problem with boundary values f . Let Rd(x) > 1/n. Then

|E[f(XT )]− Φ(x)| = O(n−2).

Lemma 9 is slightly stronger than Theorem 4.
To simplify the notations, we normalize f and Ω so that Diameter(Ω) = 1 and 0 ≤ f(x) ≤ 1

for all x.
We split the proof of the theorem into several steps.
Define the one-dimensional stochastic process Yt = logRd(Xt).
Step 1: The process Yt does not have a significant drift upwards. More specifically,

E[Yt+1|Yt] < Yt + n−3 (3)

Proof. Let z be the point near ∂Ω realizing Rd(Xt). Note also, that for any two numbers a1, a2 >
n−3 we have | loga1 − loga2| < n3|a1 − a2|. Using the elementary fact that the function g(x) =
log |z − x| is harmonic on R2, we obtain

Yt = g(Xt) =
∫ 1

0
g

(
Xt +

Rd(Xt)
2

e2πiθ

)
dθ >

1
n2c

n2c−1∑

j=0

g

(
Xt +

Rd(Xt)
2

e2πi j

n2c

)
− πRd(Xt)n−2c · (2/Rd(Xt)) > (4)

To obtain the last inequality, we approximate the integral using n2c equally spaced points, the
distance between adjacent points is πRd(Xt)n−2c, and the derivative of g is bounded by 2/Rd(Xt).
We continue the chain of inequalities by noting that the snapping operator S only changes the
value of |x− z| by at most n−c, and hence the value of g(x) is changed by at most n3−c,

1
n2c

n2c−1∑

j=0

g

(
S

(
Xt +

Rd(Xt)
2

e2πi j

n2c

))
− 2πn−2c − n3−c > E[Yt+1|Yt] − n−3. (5)

Step 2: For some absolute constant β > 0, E[(Yt − Yt−1)2|t ≤ T ] > 2β > 0

Proof. Let z be the point near ∂Ω realizing Rd(Xt). With probability at least 1/3, Yt+1 < log |z −
Xt+1| < log

√
3

2 + log |z −Xt| < −0.1 + Yt, provided Xt is a away from the boundary (see Fig. 4).
Thus

E[(Yt − Yt−1)2|t ≤ T ] > 1/3(−0.1)2 > 0.002 > 0,

so we can take β = 0.001.

We now define a new process Zt = Yt − n−3t. Note, that by Step 1, the process Zt = Yt − n−3t

is a supermartingale. For t > T , we define Zt = ZT . By Doob-Meyer decomposition (see [KS91]),
we can write Zt = Mt + It, where M is a martingale and It is a decreasing adapted process.
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Figure 4: with probability at least 1/3, the jump brings Xt closer to z by a factor of at least
√

3
2

Zt ≤ Yt ≤ 0, since the diameter of Ω is equal to 1. Also, by the definition of the stopping time
T , Zt > −4 logn. Observe that, like Yt, Zt has definite quadratic variation at each jump. More
specifically,

E[(Zt − Zt−1)2|t ≤ T ] = E[(Yt − Yt−1)2|t ≤ T ] + 2n−3E[(Yt − Yt−1)|t ≤ T ] + n−6 > β (6)

provided n is large.
Step 3: E[Zt−1(Zt − Zt−1)] ≥ 0.

Proof.

E[Zt−1(Zt − Zt−1)] = E[Zt−1E[Zt − Zt−1|Zt−1]] =
E[Zt−1E[Mt −Mt−1|Zt−1]] + E[Zt−1E[It − It−1|Zt−1]] ≥ 0. (7)

since E[Mt −Mt−1|Zt−1] = 0, It − It−1 ≤ 0, Zt−1 ≤ 0.

Take now T ′ = C log2 n, where C is a large constant defined later.
Step 4: P[T ≤ T ′] > 1/2.

Proof. Assume the contrary. It means that for all t ≤ T ′, P[T ≥ t] = 1 − P[T < t] ≥ 1/2. It
implies that

E[Z2
t ] = E[((Zt − Zt−1) + Zt−1)2] = E[Z2

t−1] + E[(Zt − Zt−1)2] + 2E[Zt−1(Zt − Zt−1)] =

E[Z2
t−1] + E[(Zt − Zt−1)2|t ≤ T ]P[T ≥ t] + 2E[Zt−1(Zt − Zt−1)] ≥ E[Z2

t−1] + β/2 (8)

The last inequality follows from the equation (7).
It implies that E[Z2

T ′ ] ≥ β/2T ′ = Cβ/2 log2 n. But 0 ≥ ZT ′ > −4 logn, so E[Z2
T ′ ] < 16 log2 n.

So, if we take C = 32/β, we get a contradiction.

Step 5: P[T < B log3 n] > 1 − n−2. In other words, with high probability XT stops near the
boundary before the time expires.
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Proof. By repeating the process from the Step 2 independently 2 logn/ log 2 times, we get that
after 2C log3 n/ log 2 steps,

P[T < 2C log3 n/ log 2] > 1 − n−2.

It means that with probability at least 1 − n−2 for some t < 2C log3 n/ log 2, Xt is n−3-close to
∂Ω. Thus, if we take B = 2C/ log 2 in the definition of the stopping time T , we get the desired
conclusion.

In the next step, we use Harnack’s inequality (see, for example, [Ste93]) to estimate the distor-
tion of the map Φ:

Lemma 10 (Harnack’s inequality). Let Ω ⊂ Rk, x, y ∈ Ω, dist(x, ∂Ω) = R, ‖x− y‖ = r. Let
Ψ be a positive harmonic function in Ω. Then

(
R− r

R+ r

)k

≤ Φ(x)
Φ(y)

≤
(
R+ r

R− r

)k

Let us define two random processes we use to estimate |E[f(xT )]− Φ(x)|:

Φ+
t = Φ(Xt) + n3−ct, Φ−

t = Φ(Xt) − n3−ct

Step 6: Φ+
t is a submartingale and Φ−

t is a supermartingale

Proof. The proof is very similar to the proof of Step 1. Harnack’s Inequality and 0 < Φ < 1 imply
that

Φ(Xt) =
∫ 1

0
Φ

(
Xt +

Rd(Xt)
2

e2πiθ

)
dθ >

1
n2c

n2c−1∑

j=0

Φ
(
Xt +

Rd(Xt)
2

e2πi j

n2c

) (
1 − πRd(Xt)n−2c · (2/Rd(Xt))

)
>

1
n2c

n2c−1∑

j=0

Φ
(
S

(
Xt +

Rd(Xt)
2

e2πi j

n2c

)) (
1 − 2πn−2c − n3−c

)
>

1
n2c

n2c−1∑

j=0

Φ
(
S

(
Xt +

Rd(Xt)
2

e2πi j

n2c

))
− 2πn−2c − n3−c > E[Φ(Xt+1)] − n−3. (9)

It implies the first statement. The proof of the second statement is the same.

Now we are in position to prove Lemma 9.

Proof of Lemma 9. By the Submartingale Theorem (see [Dur91]), Φ(x) = Φ+
0 ≤ E[Φ+

T ]. But
Φ+

T = Φ(XT ) + n3−cT ≤ Φ(XT ) + n3−c log3 n. Thus

Φ(x) ≤ E[Φ(XT )] + n3−c log3 n ≤ E[f(XT )] + n3−c log3 n+

E[Φ(XT )|T = B log3 n]P[T = B log3 n]+

max
T<B log3 n

(Φ(XT) − f(XT )) ≤ E[f(XT )] + 3Ln−2
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for large enough L and c. Here we use the fact that the modulus of continuity of Φ is no greater
than the modulus of continuity of f(see [GM04]). We also use the Step 4 to obtain an estimate on
P[T = B log3 n]. Using the same reasoning for Φ−

t we get

Φ(x) ≥ E[f(XT )]− 3Ln−2.

Finally, by combining the two inequalities we obtain the statement of the theorem.

4 Higher dimensions: planar-like domains

The proposed algorithm for solving the planar Dirichlet problem does not work for general higher
dimensional domains. The only obstacle to literally repeating our proof in the higher dimensions
comes from the absence of the superharmonicity of the function log dist(x, ∂Ω) (the mean-value
property used in equation (4)). In other words, it is no longer true that the value of log dist(Xt, ∂Ω)
is non-increasing on average. It turns out that the difficulty leads to an example of a domain for
which our method does not converge in logarithmic number of steps, and will thus require a large
number of random bits.

Let us describe an example of such a domain in R3. The domain Ω will be the unit cube with
the cubes of the size 1/n removed around every nonzero point of 2/

√
n grid. The standard results

about the random walk at R3 (see, for example, [Dur91]) imply that the random walk started at the
center of the cube hits its surface before it hits the removed cubes with probability greater than 1/2.
Thus if the Dirichlet boundary condition f is changed on the surface of the unit cube, Φ(center)
will change significantly. On the other hand, since for any point x ∈ Ω , dist(x, ∂Ω) < 1/

√
n, it will

take Ω(
√
n) steps for our process to reach the boundary of the unit cube. So our algorithm will

require at least Ω(
√
n logn) random bits.

On the other hand, for a large class of domains, which we call planar-like, our algorithm still
works.

Definition 11. A domain Ω ⊂ Rk is called planar-like if for every point y 6∈ Ω there is a k − 2-
dimensional plane containing y and not intersecting Ω.

Note that since 2 − 2 = 0-dimensional planes are points, every planar domain is automatically
planar-like. We can also observe that any convex domain is planar-like, since in this case for every
y 6∈ Ω there is a k − 1-dimensional plane containing y and not intersecting Ω.

It is very easy to see that the function logdist(x, ∂Ω) is superharmonic for planar-like domains
(because logarithm of the distance to a k− 2-dimensional plane is harmonic away from the plane).
This allows us to slightly modify the proof of Lemma 9 (only Step 4 requires a minimal change in
the constants in Harnack’s principle) to obtain the following Theorem.

Theorem 12. The EucDP over Rk is solvable by a randomized TM in space S = O(logn) using
R = O(log4n) random bits for planar-like domains.
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