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Abstract. We analyze the complexity of the Walk on Spheres algorithm for simulating Brownian
Motion in a domain Ω ⊂ R

d. The algorithm produces samples from the hitting probability distribu-
tion on ∂Ω within an error of ε. We introduce energy functions using Newton potentials to obtain
an O(log2 1/ε) upper bound on the convergence of the algorithm for a very rich class of domains
Ω. In particular, we show this rate of convergence for all 3-dimensional domains with connected
exterior.

We show that, in general, the convergence rate of the algorithm may be polynomial in 1/ε, and

give a tight worst-case bound of O(ε4/d−2) on the convergence of the algorithm in d ≥ 3 dimensions.

For d = 3, this gives an optimal upper bound of O(ε−2/3), improving on the previously known bound
of O(ε−1).

1. Introduction

Brownian Motion (BM) is the most important model of randomized motion in R
d. It is the simplest

(but, in a sense, generic) example of a continuous diffusion process. BM found an astonishing
number of application to diverse areas of Mathematics and Science, including Biomathematics,
Finance, Partial Differential Equations, and Statistical Physics [EKM97, KS98, Maz02, Nel67,
Szn98].
Because of the ubiquity of BM, its effective simulation provides a way to efficiently solve a variety
of problems, such as computation of the Conformal Maps, Tomography, and Stochastic PDEs. One
of the main ways in which simulations of BM are used is to study its first hitting probabilities with
respect to some stopping conditions. If the stopping condition is that of hitting the boundary of
some domain Ω, then for any starting point x the harmonic measure hx on ∂Ω gives the probability
distribution of the first location where a BM originated at x hits ∂Ω. In many of the BM’s
applications, its enough to obtain information about the harmonic measure, more specifically, to
efficiently sample from it.
One of the immediate applications of the ability to sample from harmonic measures is solving the
Dirichlet problem in R

d. The Dirichlet problem on a domain Ω ⊂ R
d with boundary condition

f : ∂Ω → R is the problem of finding a function u : Ω → R satisfying

(1)

{

∆u(x) = 0 x ∈ Ω
u(x) = f(x) x ∈ ∂Ω

In other words, finding a harmonic function u subject to the boundary conditions f . By the
celebrated Kakutani’s Theorem [GM04], the value of u at x ∈ Ω is exactly the expected value of f
with respect to the harmonic measure hx on ∂Ω: u(x) = Ehx(z)[f(z)].
In the present paper we study the amount of time it takes to sample from the harmonic measure
with precision ε using the Walk on Spheres algorithm – the simplest and most commonly used
algorithm for sampling from the harmonic measure.
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1.1. The Walk on Spheres algorithm. The Walk on Spheres (WoS) algorithm was first proposed
in 1956 by M. Muller in [Mul56]. In the paper the method was applied to the solution of various
boundary problems for the Laplace operator, including the Dirichlet problem. The logarithmic
running time of the process Xt was established for convex domains by M. Motoo in [Mot59] and
was later generalized for a wider, but still very restricted, class of planar and 3-dimensional domains
by G.A. Mikhailov in [Mih79]. See also [EKMS80] and [Mil95] for additional historical background
and the use of the algorithm for solving other types of boundary value problems.
In our earlier work [BB07], we established sharp bounds on the rate of convergence of WoS for
arbitrary planar domains. Unfortunately, the techniques of [BB07] do not generalize well to higher
dimensions. In the present paper, we introduce an energy function with logarithmic growth. It
allows us to obtain a polylogarithmic rate of convergence of WoS for large class of domains in R

d

including, for example, all domains in R
3 with connected complements. We also establish sharp

bounds on the worst possible rate of convergence for general higher dimensional domains.
Let us now define the WoS. We would like to simulate a BM in a given bounded domain Ω until it
gets ε-close to the boundary ∂Ω. Of course one could simulate it using jumps of size δ in a random
direction on each step, but this would require O(1/δ2) steps. Since we must take δ = O(ε), this
would also mean that the process may take O(1/ε2) steps to converge.
The idea of the WoS algorithm is very simple: we do not care about the path the BM takes, but
only about the point at which it hits the boundary. Thus if we are currently at a point Xn ∈ Ω
and we know that

d(Xn) := d(Xn, ∂Ω) ≥ r,

i.e. that Xn is at least r-away from the boundary, then we can just jump r/2 units in a random
direction from Xn to a point Xn+1. To justify the jump we observe that a BM hitting the boundary
would have to cross the sphere

Sn = {x : |x − Xn| = r/2}

at some point, and the first crossing location Xn+1 is distributed uniformly on the sphere. There is
nothing special about a jump of d(Xn)/2 and it can be replaced with any α d(Xn) where 0 < α < 1.
Let {γn} be a sequence of i.i.d. random variables each being a vector uniformly distributed on the
unit sphere in R

d. We could take, for example, γn = Γd
n/|Γd

n|, where Γd
n is a normally distributed

d-dimensional Gaussian variable. Then, schematically, the Walk on Spheres algorithm can be
presented as follows:

WalkOnSpheres(X0, ε)
n := 0;
while d(Xn) = d(Xn, ∂Ω) > ε do

compute rn: a multiplicative estimate on d(Xn) such that β · d(Xn) < rn < d(Xn);
Xn+1 := Xn + (rn/2) · γn;
n := n + 1;

endwhile

return Xn

Thus at each step of the algorithm we jump at least β/2 and at most 1/2-fraction of the distance to
the boundary in a random direction. An example of running the WoS algorithm in 2-d is illustrated
on Figure 1.
As mentioned earlier, it is clear that the algorithm is correct. Moreover, it is not hard to see that it
converges in O(1/ε2) steps. However, in many situations, this rate of convergence is unsatisfactory.
In particular, if we wanted to get 2−n-close to the boundary, it would take us a number of steps
exponential in n. As it turns out, in many natural situations, the rate of convergence is polynomial
in n (i.e. polylogarithmic in 1/ε). The object of the paper is to prove that this is the case.
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Figure 1. An illustration of the WoS algorithm for d = 2: one step jump (a), and
a possible run of the algorithm for several steps (b)

While an actual implementation of the WoS would involve round-off errors introduced through an
imperfect simulation, we will ignore those to simplify the presentation as they do not affect any
of the main results. Thus the problem becomes purely that of analyzing the stochastic process Xt

and its convergence speed to ∂Ω.

Providing the domain Ω to the algorithm. It is worth noting that the algorithm needs access to the
input domain Ω is a very weak sense. We need an oracle distΩ(x) that satisfy the following:

(2) distΩ(x) ∈







(βd(x), d(x)) if x ∈ Ω, d(x) > βε
[0, βε) if x ∈ Ω, d(x) ≤ βε
0 if x /∈ Ω

for some 0 < β < 1. Note that distΩ would also allow us to decide both the size of the jump on
step n and whether Xn is sufficiently close to ∂Ω for the algorithm to terminate.
If Ω is given to the algorithm as a union of squares on a ε-fine grid, then distΩ can be computed in
time poly(1/ε). In many applications, however, this function can be computed in time poly(log1/ε),
because we only need to estimate the distance within a multiplicative error of β. The precise
condition for this is that the complement set Ωc is poly-time computable as a subset of R

d in the
sense of Computable Analysis. See for example [BW99, Wei00, BC06] for more details on poly-time
computability of real sets. The vast majority of domains in applications satisfy this condition.
Thus, in cases when the domain Ω is sufficiently nice for Ωc to be poly-time computable, the rate
of convergence of the WoS becomes the crucial component in the running time of its execution. In
particular, depending on whether the rate of convergence is poly(1/ε) of poly(log1/ε) it could take
time that is either exponential or polynomial in n to sample points that are 2−n-away from ∂Ω.

1.2. The results.

Definition 1. A domain Ω ⊂ R
d is said to be c-thick for 0 < c < 1 if for every x ∈ ∂Ω there is a

Borel measure µx which satisfies the following conditions:

(1) supp(µx) ∩ Ω = ∅, or equivalently µx(Ω) = 0;
(2) for any y ∈ R

d and r > 0, µx(B(y, r)) ≤ rd−2;
(3) for any r > 0, µx(B(x, r)) ≥ c · rd−2.

The class of c-thick domains is very rich, even for specific constant values of c. In particular we
have the following interesting special cases.

Claim 2. (1) All 2-dimensional domains are 1-thick;
3



(2) all bounded d-dimensional domains Ω satisfying the following condition:

for each x ∈ ∂Ω there is a (d − 2)-dimensional hypercube Lx of some size α with Lx ∩ Ω = {x}

are c-thick for some c = c(α);
(3) all bounded 3-dimensional domains Ω such that the complement Ωc is connected are 1

2 -thick.

Proof. The first statement simply follows by placing a δ-measure µx({x}) = 1 at x. The second
statement follows similarly by using the normalized Lebesgue measure on the hypercube Lx as the
measure µx.
To prove the third statement, consider a measurable function fx : [0,∞) → Ωc such that |x −
fx(r)| = r. Existence of such a function follows from the connectedness of Ωc 3 x by a standard
topological argument. Define the measure µx as

µx(B) =
1

2
m1(f

−1
x (B)),

where m1 is the standard Lebesgue measure on [0,∞). Let y ∈ R
3 with |y−x| = a and r > 0, then

f−1
x (B(y, r)) ⊂ [a − r, a + r],

and hence µx(B(y, r)) ≤ r. On the other hand, for each r > 0,

µx(B(x, r)) =
1

2
m1(f

−1
x (B(x, r))) =

1

2
m1([0, r)) =

1

2
r.

�

Our main result states that for c-thick domains the Walk on Spheres will reach the 1
n -neighborhood

of ∂Ω in time polylogarithmic in n:

Theorem 3. There is a constant M = M(c, d) such that for any c-thick domain Ω ⊂ B(0, 1) ⊂ R
d

and any x0 ∈ Ω the following holds. Let Xt be the Walk on Spheres process with X0 = x0. Let Tn

be the first time such that d(Xt, ∂Ω) < 1/n then

P[Tn > 2M log2 n] < 1/2.

By using the Markov property of the Walk on Spheres and repeating it C times we obtain that

P[Tn > 2CM log2 n] < 2−C ,

which also implies E[Tn] ≤ M · log2 n.
In particular, by Claim 2, we obtain polylogarithmic convergence of the WoS on all planar domains
and all domains in 3-d space with connected exterior. As the following lower bound demonstrates,
the lack of c-thickness in dimensions 3 and higher is an obstacle to fast convergence.

Theorem 4. For every d > 2 there is a domain Ω ⊂ B(0, 1) ⊂ R
d and an n such that if Tn is the

first time the WoS is 1/n-close to ∂Ω as above, then there is a constant A = A(d) > 0 such that

(3) P[Tn > A · n2−4/d] > 1/2.

Note that, as expected, (3) says nothing about d = 2. Also, the domains Ω in Theorem 4 are

extremely “thin”, having a thickness of c = O(n4/d−2) � 1. It turns out that Theorem 4 is tight,
and O(n2−4/d) is the worst number of steps one can expect, as demonstrated by the following
matching upper bound.

Theorem 5. For every d > 2 there is a constant B = B(d) > 0 such that for any domain
Ω ⊂ B(0, 1) ⊂ R

d,

(4) P[Tn > B · n2−4/d] < 1/2.
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Theorem 5 is somewhat surprising, not only because it beats the O(n2) bound guaranteed by
general diffusion properties of Brownian Motions, but also because for dimension d = 3 it gives
an upper bound of O(n2/3) steps beating the O(n) bound that would follow from analysis using
subharmonic functions as in prior works.

1.3. Techniques. The main technical contribution of the paper is constructing an energy function
U : Ω → [0,∞) for the proof of Theorem 3. The energy function U is subharmonic, i.e. ∆U ≥ 0.
This means that on average when the WoS makes a jump of magnitude rn/2 in a random direction,
the value of the function does not decrease: E[U(Xk+1)|Xk] ≥ U(Xk). Moreover, while U(y) will
tend to∞ as y tends to ∂Ω, we will make sure that it does not grow too fast: U(y) ≤ log(2/d(y, ∂Ω)).
In other words, once the value of U(Xt) reaches log(2n), we can be sure that Xt is at least 1/n-close
to ∂Ω, and thus the WoS must have terminated before time t.
Hence the process U(Xk) terminated when Xk reaches the 1/n-neighborhood of ∂Ω is a submartin-
gale on the interval [0, log(2n)]. Note that by definition the process U(Xk) can never fall below
0. The main technical challenge is to show that the function U can be constructed in a way that
E[(U(Xk+1)−U(Xk))

2] > α > 0 for some fixed α. This bounds the average step size of the process
U(Xk) from below, and implies that with probability > 1/2 the process will take O( 1

α log2 n) to
reach a value bigger than log(2n).
We construct the function U as a supremum of a family of Newton potentials of a certain set of
Borel measures. As Newton potentials are harmonic, the subharmonicity of U is guaranteed. The
bulk of the work then goes into bounding the average deviation α of the process U(Xk) in terms of
the thickness of the domain. Note that this analysis is absolutely necessary, because by Theorem 4
we know that in general the rate of convergence could be Ω(n2−4/d), far worse than the O(log2 n)
bound we are trying to prove.

2. Upper bounds on the rate of convergence

2.1. Constructing an energy function of logarithmic growth. For a finite Borel measure µ
on R

d, the Newton potential of the measure µ is defined by

Uµ(x) =
1

d − 2

∫

dµ(z)

‖z − x‖d−2
,

if d ≥ 3, and by

Uµ(x) =

∫

log
1

‖z − x‖
dµ(z).

if d = 2. The value Uµ(x) = ∞ is allowed when the integral diverges.
It is well known (e.g. see [Lan72]) that the function Uµ is superharmonic on R

d, and harmonic
outside of supp µ.
Let us now fix a c-thick domain Ω ⊂ B(0, 1) ⊂ R

d. Let us consider the set M of all Borel measures
µ supported inside the B(0, 2) and outside of Ω (i.e. µ(Ω) = 0), satisfying the following condition:

(5) for any y ∈ R
d and r > 0, µ(B(y, r)) ≤ rd−2

Let us recall that d(y) = dist(y, ∂Ω).

Lemma 6. For y ∈ Ω and µ ∈ M,

Uµ(y) ≤ log
2

d(y)
.

Proof. The following identity follows from Fubini Theorem and substitution,

(6) Uµ(y) =
1

d − 2

∫ ∞

0
µ(B(y, t−1/(d−2))) dt =

∫ ∞

0

µ(B(y, r))

rd−1
dr
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for d ≥ 3. Similarly,

(7) Uµ(y) =

∫ ∞

−∞
µ(B(y, e−t)) dt =

∫ ∞

0

µ(B(y, r))

r
dr

for d = 2. By (5) and supp µ ∩ Ω = ∅, these equations imply that for any d ≥ 2,

(8) Uµ(y) ≤

∫ 2

d(y)

1

t
dt = log

2

d(y)
.

�

Let us now introduce the energy function U(y) = supµ∈M Uµ(y). It is a subharmonic function on
Ω, as a supremum of locally bounded family of harmonic functions. Furthermore, by Lemma 6 it
satisfies U(y) ≤ log 2

d(y) for all y ∈ Ω.

2.2. Proof of the upper bound. Let Xt be the WoS process initiated at some point X0 = y ∈ Ω.
Let us define a new process Ut = U(Xt), the value of the energy function at the n-th step of the
process. Note that because U is subharmonic and positive, Ut is a positive submartingale, that is
E[Ut+1|Ut] ≥ Ut. From Lemma 6 it follows that if Ut > log 2n then d(Xt) < 1/n.
The main technical step in the proof of Theorem 3 is contained in the following lemma.

Lemma 7. There are constants k and L, depending only on the thickness c, the precision of the
distance estimate β, and the dimension d, such that

E[(Ut+k − Ut)
2|Ut] > L.

Proof. Let us fix t. Since M is a compact set, Ut = Uµ(Xt) for some µ ∈ M. Let x be the point
of ∂Ω closest to Xt.
First, let us consider the case d = 2. Then Ut+k ≥ U δx(Xt+k) = log 1

|x−Xt+k|
. Given Xt, with

probability at least 1/4k, |Xt+k − x| ≤ d(Xt)/3, for large enough k. Hence Ut+k ≥ log 3
d(Xt)

w.p.

> 1/4k. By Lemma 6, Ut ≤ log 2
d(Xt)

, and thus with probability at least 1/4k,

|Ut+k − Ut|
2 ≥ (log 3/2)2,

implying E[(Ut+k − Ut)
2|Ut] > 1

4k (log3/2)2, for some constant k = k(β).
Let us now consider case when d > 2. Fix Xt and the corresponding measure µ. We will construct
a δ, dependent only on d, c, and β, and a measure ν ∈ M, such that

(9) Uν(y) > Uµ(Xt) + 1 whenever |y − x| < δ · d(Xt).

This would imply ‖Ut+k −Ut‖
2 ≥ Uν(Xt+k)−Uµ(Xt) > 1 whenever |Xt+k − x| < δ. Note that for

some p > 0 dependent only on d and β,

P[|Xt+k − x| < (1− β/2)−k d(Xt)] > pk.

Hence, for sufficiently large k, P[|Xt+k − x| < δ] > pk, which, in turn, implies the statement of the
lemma.
Our goal now is to construct ν satisfying (9). Let measure µ1 be the measure µx from Definition
1 restricted to B(Xt, 2d(Xt)), µ2 = µ3 = 0, and for k ≥ 4, let µk be the measure µ restricted to
the d-dimensional annulus Ak = {z : 2k−1d(Xt) ≤ ‖z − Xt‖ ≤ 2kd(Xt)} scaled by the factor

1−αk := 1−2(3−k)(d−2). Let us also put α1 = α2 = α3 = 1. We define ν =
∑

k µk. The ingredients
of the construction are illustrated on Figure 2(a).
Let us first prove that ν ∈ M. Consider any disk B(z, r). Let K be the largest number such that
B(z, r) intersects AK . If B(z, r) does not intersect B(Xt, 2d(Xt)), the measure ν is no greater than
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µ on B(z, r), and thus ν(B(z, r)) ≤ rd−2. If K = 1, ν(B(z, r)) = µx(B(z, r)) ≤ rd−2. For all other
cases, r ≥ 2K−2d(Xt), which, by the choice of αK , implies that αKrd−2 ≥ (2d(Xt))

d−2. Thus

ν(B(z, r)) ≤ µx(B(Xt, 2d(Xt))) + µ(B(x, r))−
K
∑

k=1

αkµ(B(z, r) ∩ Ak) ≤

(2d(Xt))
d−2 + (1− αK)µ(B(z, r)) ≤ αKrd−2 + (1 − αK)rd−2 = rd−2.

Next, we will show that

(10) Uν(y) ≥ Uµ(y)− C1 + c · 22−d log
1

δ
and

(11) Uµ(y) ≥ Uµ(Xt)− C2

for some constants C1 and C2 depending only on d and c. These inequalities provide the estimate
(9) whenever log 1/δ > 2d−2(C1 + C2 + 1)/c.
To establish (10), let us note that for any k we have

µ(A1) + µ(A2) + · · ·+ µ(Ak) = µ(B(Xt, 2
kd(Xt))) ≤ (2kd(Xt))

d−2.

By the Abel summation formula,
∑

k

αk2k(2−d)µ(Ak) ≤
∑

k

d(Xt)
d−2(2d−2αk−1 − αk) · 2

2−d ≤ 2(d−2)(d(Xt))
d−2.

This implies

(12)
1

d − 2

∑

k

αk

∫

Ak

1

‖z − Xt‖d−2
dµ(z) ≤ 2d−2

∑

k

αkµ(Ak)(2kd(Xt))
2−d ≤ 4d−2.

Thus we obtain

Uν(y) ≥

∫ d(Xt)

2δd(Xt)

µx(B(y, r))

rd−1
dr +

∑

k≥2

∫ ∞

0

µk(B(y, r))

rd−1
dr ≥

∫ d(Xt)

2δd(Xt)

µx(B(x, r − δd(Xt)))

rd−1
dr +

∫ ∞

0

µ(B(y, r))

rd−1
dr −

1

d − 2

∑

k≥1

αk

∫

Ak

dµ(z)

‖z − Xt‖d−2
≥

∫ d(Xt)

2δd(Xt)
c ·

(

r − δr

r

)d−2 dr

r
+

∫ ∞

0

µ(B(y, r))

rd−1
dr − 4d−2 ≥ c · 22−d log

1

2δ
+ Uµ(y)− 4d−2.

which implies (10).
To obtain (11), we just need to note that

Uµ(y)− Uµ(Xt) ≥
1

d − 2

∫

|z−Xt |>4d(Xt)

(

1

‖z − y‖d−2
−

1

‖z − Xt‖d−2

)

dµ(z)−

∫ 4d(Xt)

d(Xt)

µ(B(Xt, r))

rd−1
dr ≥ −d − log 4.

We defer the details of the last derivation to the full version of the paper. �

We can now use Lemma 7 to prove the main theorem. Let us replace the submartingale Ut by a
stopped submartingale

Vt =

{

Ut, t < Tn

UTn , t ≥ Tn
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By the optional stopping time theorem (see [KS91]), Vt is also a positive submartingale; Vt ≤ log 4
n .

This implies, in particular, that

(13) E[Vt(Vt+k − Vt)] = E[E[Vt(Vt+k − Vt)|Vt]] ≥ E[E[Vt(Vt − Vt)|Vt]] = 0

Lemma 7 implies that

(14) E[(Vt+k − Vt)
2] > L ·P[Tn > t + k].

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Assume first that for some M,

P[Tn > M log2 n] ≥ 1/2.

It means that for all t ≤ M log2 n − k, P[Tn ≥ t + k] ≥ 1/2. This implies

E[V 2
t+k] = E[((Vt+k − Vt) + Vt)

2] = E[V 2
t ] + E[(Vt+k −Vt)

2] + 2E[Vt(Vt+k −Vt)] ≥ E[V 2
t ] + L/2.

The last inequality follows from (13) and (14). Hence E
[

V 2
M log2 n

]

≥
LM log2 n

2k
. Since Vt ≤ log 4

n ,

this leads to a contradiction for large enough M . �

Figure 2. (a) Construction of the measure ν in Theorem 3; (b) The regions Rk

from the proof of Theorem 5

2.3. The upper bound in the general case: proof of Theorem 5. The goal of Theorem 5 is
to give a tight unconditional upper bound on the convergence of the WoS. The idea of the proof
is as follows. When the WoS is far from the boundary ∂Ω it makes fairly big steps and when it is
close it makes small steps. There are not too many big steps because the number of big steps of
length > ε confined to B(0, 1) is bonded by O(1/ε2). On the other hand, there are not too many
small steps, because a small step means that the WoS is very close to ∂Ω, and should converge
before having an opportunity to make many more steps. The proof follows from two claims. The
first bounds the number of big jumps.
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Claim 8. There is a constant C1 = C1(d) such that for N ≥ C1 · n
2` if γ1, γ2, . . . , γN is a sequence

of i.i.d. random drawings uniformly distributed on the unit sphere and a1, a2, . . . , aN is a positive
random process such that ak+1 is adapted to {γi, ai}k

i=1 and ai ∈ [0, 1]. Then

(15) P

[

ai > n−` for at least N/2 of the i’s and
N

max
k=1

∣

∣

∣

∣

∣

k
∑

i=1

aiγi

∣

∣

∣

∣

∣

< 2

]

< 1/4.

Proof. We observe that

Mk =

(

k
∑

i=1

aiγi

)2

−
k
∑

i=1

|ai|
2

is a martingale. The claim is obtained by stopping it when k = N or when the condition
∣

∣

∣

∑k
i=1 aiγi

∣

∣

∣
< 2 is violated, and using an argument similar to one used in the proof of Theorem 3.

We defer the details to the full version of the paper. �

Claim 8 bounds the number of big jumps made by the WoS. To bound the number of small jumps,
we denote by R0 ⊂ Ω the 1/n-neighborhood of ∂Ω, and more generally, by

Rk := {x ∈ Ω : 2k−1/n < d(x, ∂Ω) ≤ 2k/n}

(see Figure 2(b)). Recall that Xt is the WoS process and T is its stopping time (i.e. the first time
when Xt ∈ R0), we claim:

Claim 9. Denote

vk = #{t < T : Xt ∈ Rk},

then

P[vk > C2 · 2
k(d−2)M ] < 1/4M ,

for some constant C2 = C2(d, β) and for any M > 1.

Proof. Let us assume, for simplicity, that the WoS at each step makes a jump in a random direction
of at least 7/8 the distance to the boundary. Removing the assumption will only affect the value
of the constant C2. Suppose that at some point t, Xt ∈ Rk. We estimate the probability that this
is the last time the WoS visits Rk from below.
First of all, with some constant probability p > 0, Xt+1 ∈ Rk+2, i.e. the first jump brings us much
closer to ∂Ω. Let x ∈ ∂Ω be the nearest point to Xt+1 in ∂Ω. We have |x − Xt+1| < 2k−2/n.
Consider the harmonic function

Φx(y) =
(2n)2−d

|y − x|d−2
−

22−d

2(k−1)(d−2)
.

in R
d. Then the process Φx(Xt+j) is a martingale. We stop it at time t + τ when either the WoS

terminates or when Xt+τ ∈ Rk (i.e. the process gets back to Rk), whichever comes first. If Xt+τ is
1/n-close to ∂Ω (but not closer than 1/2n), then Φx(Xt+τ ) ≤ 1. If Xt+τ ∈ Rk, then Φx(Xt+τ ) ≤ 0.
Thus the probability that the WoS terminates at Xt+τ (i.e. we never visit Rk again) is at least

P[Xt+τ /∈ Rk] ≥ E[Φx(Xt+τ )] = Φx(Xt+1) ≥
22−d

2(k−2)(d−2)+1
= α · 2−k(d−2),

for a constant α. Thus the probability that the visit Xt to Rk is the last one is at least p·α·2−k(d−2).
The claim now follows from an estimate of the probability of having at least vk returns to Rk, each
of them not being the last one. �

Claims 8 and 9 together imply Theorem 5.
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Proof of Theorem 5. By Claim 9, for any k, we have that

P[vk−s > C2 · 2
(k−s)(d−2) · (3/2 + s/2)] < 1/43/2+s/2 = (1/8) · 2−s.

Hence, by union bound vk−s ≤ C2 · 2(k−s)(d−2) · (3/2 + s/2) for all s ≥ 0 with probability at least

3/4. Let k be such that 2k ≈ n2/d. Then, with the probability at least 3/4, we have the total
number of jumps smaller than 2k/n bounded by

(16)

k
∑

s=0

vk−s ≤
k
∑

s=0

C2 · 2
(k−s)(d−2) · (3/2 + s/2) < 4C2 · 2

k(d−2) ≈ 4C2 · n
2−4/d.

If we take N = (C1 + 8C2)n
2−4/d steps of the WoS, (16) implies that at least half the steps would

be of magnitude at least 2k/n ≈ n2/d−1, except with probability < 1/4. Applying Claim 8 with
` = 1 − 2/d, we see that with the probability at least 1/2, a WoS with more than N steps would
escape the unit ball, contradicting the fact that ∂Ω ⊂ B(0, 1). Hence with probability ≥ 1/2 the

WoS terminates after O(n2−4/d) steps. �

3. Proof of the lower bound

In this section we will prove Theorem 4, giving an example of a “thin” d-dimensional domain Ωd for
which the WoS will likely take Ω(n2−4/d) steps to converge within 1/n from the boundary ∂Ωd. The
domain Ωd is comprised of a d-dimensional unit ball B(0, 1) with a set S of α ·nd−2 points for some
small α removed from it. The points are removed from the region B(0, 2/3)− B(0, 1/3) in a way

such that for each x ∈ R
d with 1/3 < |x| < 2/3, there is an s ∈ S with |x− s| < ` := A n2/d−1. It is

not hard to see that just taking the intersection of the grid (A n2/d−1 ·Z)d with B(0, 2/3)−B(0, 1/3)
attains this goal. By making A a bigger constant we can make α arbitrarily small.
We first claim that for an appropriately chosen α, the probability that the WoS originating at 0
would first reach a 1/n-neighborhood of ∂Ωd near the unit sphere U = ∂B(0, 1) is at least 3/4. Let
s be any point in S. We first estimate the probability that a WoS would reach a 1/n-neighborhood
of s before reaching the unit sphere U . Let XT be the location of the first visit of the WoS either
in a 1/n-neighborhood of s or near U . Consider the harmonic function

Ψs(x) =
1

(n · |x− s|)d−2
≥ 0

on R
d. Then Ψs(x) ≥ 1 in the 1/n-neighborhood of s. By the harmonicity of Ψs, Ψs(Xt) is a

martingale, and thus

E[Ψs(XT )] = Ψs(X0) = Ψs(0) <
B

nd−2

for some constant B. Thus the probability that XT is in the 1/n-neighborhood of s is bounded
by B/nd−2 . By applying the union bound, we see that the probability that the WoS will visit the
1/n-neighborhood of any point in S before reaching U is at most B · α. By taking α = 1/(4B) we
obtain that with probability > 3/4 the WoS will reach U .
Each step in the portion of the WoS originating at 0 and terminating at U that crosses the region
B(0, 2/3) − B(0, 1/3) has a magnitude limited by ` = An2/d−1 by the definition of the process.
Thus, by standard properties of the diffusion process, the crossing (and thus the entire WoS) will
take at least

γ · (1/`)2 = (γ/A2) · n2−4/d

steps for some γ > 0 w.h.p., concluding the proof. We defer the full details of the last step to the
full version of the paper.
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