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Abstract. In this paper we generalize Beurling’s estimate on the rate of decay of harmonic measure
near a boundary point with given rotation. The generalization allows us to establish the existence
of phase transition for the universal bounds on the integral means mixed spectrum of bounded
simply connected domains.

1. Introduction

In what follows, Ω ⊂ C is a simply connected domain, w0 is an interior point of Ω, and φ : D → Ω
is the Riemann map with φ(0) = w0, φ′(0) > 0. ω(E) will denote the harmonic measure of E ⊂ ∂Ω
evaluated at w0. For a point v ∈ C, B(v, δ) will denote the closed ball centered at v of radius δ.

It is known (see [GM08]), that for any v ∈ ∂Ω, the harmonic measure of a small ball, ω(B(v, δ))
decays with the rate at least δ1/2 when δ → 0. It follows from Makarov’s dimension theorem (see
[Mak85]) that a.e. by harmonic measure, ω(B(v, δ)) decays like δ. More precisely, for ω - a.e.
v ∈ ∂Ω,

lim
δ→0

logω(B(v, δ))
log δ

= 1.

These results can be significantly refined using Multifractal Analysis (see, for example, [Fal90]).
Roughly speaking, dimension spectrum of ω, f(α) is defined as the dimension of the set of points
with the rate of decay (or local dimension) of harmonic measure equal to α. This ”naive” version
of the definition only makes sense for “nice” domains Ω, such as Carleson fractals and Julia sets
(see [Mak98, Zin00]).

For general domains, there are a few ways to make the notion of the dimension spectrum useful.
We will use the following version of the spectrum (see [Mak98]).

Definition 1. The Minkowski dimension spectrum of a simply connected domain Ω is defined as

f(α) = fΩ(α) = lim
η→0

lim sup
δ→0

logN(δ, α, η)
log 1

δ

,

where N(δ, α, η) is the maximum number of points vn ∈ ∂Ω, such that |vj − vk| > 2δ if j 6= k and
δα+η ≤ ω(B(vn, δ)) ≤ δα−η.

Note that for each α either fΩ(α) ≥ 0 or fΩ(α) = −∞. The latter occurs if for all small δ and η
there are no disks with the prescribed amount of harmonic measure.

The above-mentioned upper estimate of harmonic measure implies that f(α) = −∞ whenever
α < 1/2. Makarov’s theorem implies that f(1) = 1 and f(α) < α if α 6= 1.
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Closely related to the dimension spectrum is one of the central objects of the Theory of Conformal
maps, the Integral Means Spectrum, defined as

(1) βΩ(t) = βφ(t) = lim sup
r→1−

log
∫
rT |φ

′t(ζ)|d|ζ|
log 1

1−r
.

The value of the spectrum is independent of the choice of the Riemann map φ : D → Ω. We refer
to [Mak98] and [Pom92] for the discussion of the spectrum and its properties.

Integral means spectrum of a domain provide an upper bound on the dimension spectrum of
harmonic measure in the form of the following Legendre-type transform (see [Mak98]):

fΩ(α) ≤ inf
t

(α(βΩ(t)− t+ 1) + t)(2)

βΩ(t) ≥ sup
α

(
fΩ(α)− t

α
+ t− 1

)
.(3)

For Carleson fractals and Julia sets, these inequalities become equalities. Using this observation
and Fractal Approximation, one can see that the questions about sharp upper bounds on the
dimension spectrum and integral means spectrum can be studied simultaneously. More precisely,
the Universal Integral Means Spectrum

Bb(t) = sup
Bounded simply connected Ω

βΩ(t)

and the Universal Dimension Spectrum as

F (α) = sup
simply connected Ω

fΩ(α)

are related by the Legendre-type transforms (2), (3) with the equalities instead of inequalities (see
[Mak98]):

F (α) = inf
t

(α(Bb(t)− t+ 1) + t)(4)

Bb(t) = sup
α

(
F (α)− t

α
+ t− 1

)
.(5)

A lot of classical questions about the boundary behavior of conformal maps and the fine prop-
erties of harmonic measure can be reformulated in terms of Universal Integral Means Spectrum or,
equivalently, Universal Dimension Spectrum. For example, the celebrated Brennan conjecture can
be restated as Bb(−2) = 2.

The strongest conjecture about the value of Bb(t) was made by by Ph. Kraetzer (see [Kra96]):

Conjecture 1.

Bb(t) =

{
t2

4 , |t| ≤ 2,
|t| − 1, |t| > 2

.

Equivalently,

F (α) = 2− 1
α

whenever α ≥ 1/2

We refer to [BS05] and [HS08] for the survey of the recent progress related to Kraetser conjecture.
One of the most interesting features of the conjectured behavior of Bb(t) is the existence of the

phase transition phenomenon: the function becomes linear when |t| > 2. Since Bb(t) ≥ |t| − 1 and
Bb(t) is convex ([Pom92]), the existence of above-mentioned phase transition is equivalent to the
equality Bb(t) = t − 1 for some t < 0 (the existence of the phase transition for t > 0 follows from
the easy identity Bb(2) = 1). This property was established by Carleson and Makarov in [CM94]
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using the estimates on the Universal Dimension Spectrum near α = 1/2 and the Legendre-type
relations (4), (5).

Various modern approaches to the verification of Conjecture 1 make use of a slight generalization
of the integral means spectrum. Namely, one allows the exponent to be a complex number.

Definition 2. The Integral Mixed Spectrum of a simply connected domain Ω with the Riemann
map φ : D → Ω is

mΩ(z) = mφ(z) = lim sup
r→1−

log
∫
rT |φ

′z(ζ)|d|ζ|
log 1

1−r
where z ∈ C.

Since φ′(ζ) 6= 0 in D, the complex powers of φ′(ζ) are well defined, and the rate of growth does
not depend on the branch chosen. mΩ depends not only on the boundary behavior of |φ′(ζ)|, but
also on the growth of arg φ′(ζ), or the rotation of the image of the radius.

Universal Integral Mixed Spectrum is defined the same as the Integral Means counterpart:

Mb(z) = sup
Bounded simply connected Ω

mΩ(z).

In [BP87], Becker and Pommerenke extended the Brennan conjecture to the complex case, asking
whether Mb(z) = 1 whenever |z| = 2. As in the real-exponent case, since Mb(z) ≥ |z| − 1 and
Mb(z) convex, this conjecture would imply that Mb(z) = |z| − 1 whenever |z| ≥ 2. In this paper,
we establish a weak form of the last conjecture.

Theorem 1. For each θ, 0 ≤ θ < 2π there exists Tθ > 0 such that Mb(teiθ) = t− 1 for t ≥ Tθ.

Roughly speaking, Theorem 1 states that for t ≥ Tθ, the extremal growth of the mean values of
the complex powers of the derivatives occurs near a single spiral. Since it is known that Mb(0) =
0 > 0− 1, this is not the case for small values of t. Furthermore, one can show that for |z| < 2 we
have Mb(z) > |z| − 1. Consequently, we have a phase transition for the behavior of Mb(z) along
some curve surrounding zero. Becker-Pommerenke conjecture implies that this critical curve is the
circle |z| = 2. We conjecture that the following generalization of Kraetzer conjecture actually holds:

Conjecture 2.

Mb(z) =

{
|z|2
4 , |z| ≤ 2,
|z| − 1, |z| > 2

.

The smooth phase transition at z = 2, predicted by this conjecture, is shown to exist by Jones
and Makarov in [JM95] for the real values of z, and by Baranov and Hedenmalm in [BH08] for the
complex values of z.

The geometric counterpart of the Integral Mixed Spectrum is the Dimension Mixed Spectrum.
To define it, we will need to introduce a notion of rotation near a boundary point, which essentially
corresponds to the growth of arg φ′.

Definition 3. Let v ∈ ∂Ω, δ > 0, Ωδ be the connected component of Ω \ B(v, 2δ) containing w0.
Define the rotation of the domain Ω near v at the distance δ as

ρ(v, δ) = exp( inf
w∈∂Ωδ∩B(v,2δ)

arg(w − v)),

where the branch of the function g(w) = arg(w − v) is selected so that −π < arg(w0 − v) ≤ π.

Since Ω is simply-connected, the branch of g(w) is well-defined in Ω. In other words, ρ(v, δ)
measures how many times a curve should rotate around point v before it first gets 2δ-close to v
within Ω. An easy topological observation ([Bin]) shows that

(6) For any two points w1, w2 ∈ ∂Ωδ ∩B(v, 2δ), we have | arg(w1 − v)− arg(w2 − v)| ≤ 2π
3



Let us also note that we consider the exponent of the argument in Definition 3 to scale the rotation
the same way as the harmonic measure of the corresponding disc.

At this point we can introduce a two parameter generalization of the dimension spectrum, the
Dimension Mixed Spectrum (See [Bin] for further motivation and variants of the definition).

Definition 4. The Dimension Mixed Spectrum of a simply connected domain Ω is

fΩ(α, γ) = lim
η→0

lim sup
δ→0

logN(δ, α, γ, η)
log 1

δ

,

where N(δ, α, γ, η) is the maximum number of points vn ∈ ∂Ω, such that |vj − vk| > 2δ if j 6= k,
δα+η ≤ ω(B(vn, δ)) ≤ δα−η, and δγ+η ≤ ρ(vn, δ) ≤ δγ−η.

Intuitively, f(α, γ) measures the dimension of the set of point with the local dimension of har-
monic measure equal to α and the rate of boundary rotation is equal to γ. As in non-rotational
case, fΩ(α, γ) is either non-negative or equals to −∞.

The following geometric observation was essentially made by Beurling in [Beu89]. It generalizes
the lower bound of δ1/2 on the rate of decay of harmonic measure.

Lemma 1. Let fΩ(α, γ) ≥ 0 for some simply connected Ω. Then α ≥ 1
2 + γ2

2 . In other words, if

α+ η < 1+(γ−η)2
2 , then there is no v ∈ ∂Ω and δ > 0 such that

ω(B(v, δ)) ≥ δα+η and δγ+η ≤ ρ(v, δ) ≤ δγ−η.

The characterization is sharp: for any α ≥ 1
2+γ2

2 there exists a bounded domain Ω with fΩ(α, γ) ≥ 0.

Remark. Lemma 1 is equivalent to the well-known Pommerenke-Ýoccoz-Levin inequality.

As shown in [Bin], the Legendre-type relations between the Integral Means Spectrum and Di-
mension Spectrum (2), (3) generalize to the rotational case. Namely, for any simply-connected
domain Ω,

fΩ(α, γ) ≤ inf
z

(αmΩ(z) + (1− α) Re(z)− γ Im(z) + α)(7)

mΩ(z) ≥ sup
α,γ

(
fΩ(α, γ)− (1− α) Re(z) + γ Im(z)− α

α

)
.(8)

Using the Fractal Approximation, one can also generalize (4), (5) ([Bin]):

Mb(z) = sup
α,γ

(
F (α, γ)− (1− α) Re(z) + γ Im(z)− α

α

)
(9)

F (α, γ) = inf
z

(αMb(z) + (1− α) Re(z)− γ Im(z) + α) .(10)

where F (α, γ) denote the Universal Dimension Mixed Spectrum

F (α, γ) = sup
simply connected Ω

fΩ(α, γ)

It will be more convinient for us to work with Dimension Spectrum. More specifically, we will
establish the following generalization of the Beurling’s estimate (Lemma 1), which implies Theorem
1:

Theorem 2. F (α, γ) ≤ C
(
α− 1+γ2

2

)
whenever α ≥ 1+γ2

2 .

Let us note that C = 2 in this inequality is equivalent to the Becker-Pommerenke conjecture.
Conjecture 2 can be restated in terms of the Dimension Mixed Spectrum as
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Conjecture 3.

F (α, γ) = 2− 1 + γ2

α

whenever α ≥ 1+γ2

2 .

The rest of the paper is organized as follows. First, for the sake of completeness, as well as to
motivate our further arguments, we give the proof of Lemma 1. Than we explain the equivalence
of Theorem 1 and Theorem 2. Finally we provide a refinement of Lemma 1 and a combinatorial
construction necessary for the proof of Theorem 2.

2. Estimates on the harmonic measure in the presence of large rotation.

The crucial technical tool for our proofs of both Lemma 1 and the main theorems is the extremal
distance.

Definition 5. Let Ω be a domain, and E, F ⊂ Ω. For a non-negative continuous function ρ on
Ω, let

A(ρ) =
∫∫

Ω
ρ2 dx dy

and
L(ρ) = inf

σ

∫
σ
ρ ds,

where the infimum is taken over all rectifiable arcs σ in Ω joining E to F . The extremal distance
from E to F within Ω is defined as

λΩ(E,F ) = sup
ρ

L2(ρ)
A(ρ)

,

where the supremum now is taken over all ρ with A(ρ) > 0.

We refer to, say, [GM08] for the discussion of the properties of the extremal distance and the
connections with harmonic measure. We will make use of the conformal invariance of extremal
distance, the sub additivity, and the fact that to estimate the extremal distance from bellow one
just need to produce a “nice” metric ρ. Some finer properties of the extremal distance will be
introduced as they are required.

Proof or the Lemma 1. Let us note that the use of symmetry and equation (6) imply that F (α, γ) =
F (α,−γ). So without loss of generality we can assume that γ is positive. Let us fix a simply
connected domain Ω , a point v ∈ ∂Ω, a point w0 ∈ Ω. Let L be the arc of the circle centered at v
of the radius R = |w0 − v| which forms a crosscut of Ω containing w0.

Let now B(v, δ) be a ball with the harmonic measure ω(B(v, δ)) > δα+η and the rotation ρ(v, δ) <
δγ−η. Then (see [Mak87], Corollary 1.4) there exists an arc l ⊂ {w : |w − v| = 2δ} ∩ Ω such that

(11) λΩ(l, L) ≤
(
α+ η

π
+ ε(δ)

)
| log δ|,

where ε(δ) → 0 when δ → 0.
Let us consider a branch gv(w) of the function log(w−v) in the domain Ω. To be consistent with

the definition of the rotation, let us normalize gv to take the principal value for w = w0. By the
conformal invariance of extremal distance, λΩ(l, L) is the same as the extremal distance between
gv(L) ⊂ {u : Im(u) = logR} and gv(l).

To obtain a lower estimate on λΩ(l, L), we consider the domain

Ω′ = gv(Ωδ ∩ Ω0),

where Ω0 is the connected component of the set Ω \ L containing the arc l.
5



In the standard Euclidean metric, the area of the domain is at most 2π log R
2δ , since the projection

of the Ω′ to the real axis has the length log R
2δ , and the length of each vertical crosscut is at most

2π. On the other hand, since the rotation is at least (γ−η)| log 2δ|, the Euclidean distance between
g(l) and g(L) is at least

√
1 + (γ − η)2 log R

2δ − 4π. Thus, comparing the extremal distance to the
quantity obtained for the Euclidean metric on Ω′, we obtain the estimate

(12) λΩ(l, L) ≥ 1
π

(
1
2

+
(γ − η)2

2
− ε′(δ)

) (
log

(
R

2δ

))
,

where ε′(δ) → 0 when δ → 0.
Combination of (11) and (12) gives the inequality

1
π

(
1
2

+
(γ − η)2

2
− ε′(δ)

) (
log

(
R

2δ

))
≤

(
α+ η

π
+ ε(δ)

)
| log δ|,

which implies the first assertion of the Lemma if δ is small enough.
To prove the exactness, let us fix γ. Take t = arctan γ and consider the domain h(D), where

h(z) = (1 − z)λ cos teit . The map h is bounded and univalent in D for 0 < λ ≤ 2. Near the point
v = h(1) = 0 the local dimension of harmonic measure of h(D) is equal to α = 1

λ cos2 t
= 1+γ2

λ and
the local rotation rate is equal to γ. �

Proof that Theorem 2 is equivalent to Theorem 1. Let us first suppose that Theorem 2 holds. Ob-
serve that for any θ, (α− 1) cos θ + γ sin θ ≤

√
(α− 1)2 + γ2. Thus we have

F (α, γ) ≤ C(α− (α− 1) cos θ − γ sin θ)

for any θ. So, by (9),

Mb(teiθ) ≤ sup
α,γ

(C − t)
(

1−
(

1− 1
α

)
cos θ − γ

α
sin θ

)
+ t− 1 = t− 1

for t = C =: T . Thus, for |z| = T , Mb(z) ≤ |z| − 1. Since Mb is a convex increasing in every
direction function and Mb(z) ≥ |z| − 1, this implies that Mb(z) = |z| − 1 as soon as |z| ≥ T .

On the other hand, if Theorem 1 holds, then by (10)

F (α, γ) = inf
z

(αMb(z) + (1− α) Re(z)− γ Im(z) + α) ≤

inf
θ, t≥T

(α(t− 1) + (1− α)t cos θ − γt sin θ + α) = T (α−
√

(α− 1)2 + γ2).

�

It will be more convenient for us to deal with the dimension spectrum, so we prove Theorem
2. Let us note that because of the symmetry property of the universal spectrum, it is enough to
consider only nonnegative γ. The case γ = 0 immediately follows from Theorem 1 of [CM94], which
essentially states that supγ F (α, γ) ≤ C(α− 1

2). Thus we can consider only the case γ > 0.

Let us fix γ > 0 and α = γ2

2 + 1
2 +ε, ε > 0. Let us also denote µ =

√
1 + γ2. It will be convenient

to normalize Ω by the condition diam Ω = 10.
As in the proof of Lemma 1, for a point v ∈ ∂Ω let gv(w) be a branch of log(w − v). Let us

also fix a large constant A. Let L′n be the line x = −γy − nA − logµ and P ′n be the half plane
x ≥ −γy − nA− logµ.

We denote by Pn(v) the connected component of gv(Ω)∩P ′n containing gv(w0), Rn(v) = Pn+1(v)\
Pn(v), and Ln(v) = ∂Rn(v) ∩ L′n. We denote the area of Rn(v) ∩

(
P ′n+1 \ P ′n

)
by Sn(v).
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Lemma 2. Let λ̃(n, v) = inf λRn(v)(ln, ln+1), where the infimum is taken over all the connected
subsets ln and ln+1 of Ln(v) and Ln+1(v) correspondingly. Then λ̃(n, v) ≥ A2

Sn(v)µ2 . Equality is
reached only when Rn(v) is a rectangle with the sides parallel to the lines y = γx and x = −γy.

Proof. To obtain this estimate, we put the standard Euclidean metric on Rn(v) ∩
(
P ′n+1 \ P ′n

)
and

0 on the rest of Rn(v), that is on Rn(v) ∩ P ′n. Then, since the Euclidean length of intersection of
any curve joining Ln−1 and Ln with P ′n+1 \ P ′n is at least A

µ , we have

λ̃(n, v) ≥ A2

Sn(v)µ2
.

The equality in the first inequality is only achieved when this metric is extremal, and thus Rn(v)
is a rectangle as in the statement of the lemma. �

Let Tn(v) = max(Sn(v) − 8Aπ
µ2 , 0), the “excess area” of Rn(v). Notice that we need to subtract

four times the area of Rn(v) for the logarithmic double spiral with parameter γ. Define S̃n(v) :=
A(Tn(v))2

S2
n

. For the future reference, note that S̃n(v) ≤ η2 for some positive η if and only if Sn(v) ≤
8πA

(1− η
A

)µ2 .

Let Yn(v) = λ̃(n, v) − A2

Sn(v)µ2 + S̃n(v) denote the “excess” of the extremal distance in Rn(v).
Note that by Lemma 2 and the preceding observation, Yn(v) = 0 if and only if Rn(v) is a rectangle
with the sides parallel to the lines y = γx and x = −γy, one of the sides equal A and the other is
at most 8π

µ . Lemma 4 gives the quantitative version of this characteristic.
The following three technical lemmas allow us to estimate the number of non intersecting balls

with fixed rotation and large harmonic measure.

Lemma 3. For each ε > 0 and R = dist(w0, ∂Ω), there exist M = M(R) and N = N(ε, R) and,
such that the following holds. Let v ∈ ∂Ω, 1

2 exp(− A
µ2 (n +M + 1) − 2πγµ) < δ ≤ 1

2 exp(− A
µ2 (n +

M)− 2πγµ) for some n > N , and ρ(v, δ) ≤ δγ and ω(B(v, δ)) ≥ δα. Then
n∑
j=1

Yj+M (z) ≤ C
A

µ2
nε

for some absolute constant C > 0. In addition, v + exp
(
∪M+n
j=M Rj(v)

)
∩B(v, δ) = ∅.

Proof. First, we pick M so that R > 1
µ exp(−MA + 2π). This normalization guarantees that

gv(w0) ∈ P ′M .
As in the proof of Lemma 1, we can use Corollary 1.4 in [Mak87] to see that since ω(B(v, 2δ)) ≥

δα, there exist two arcs l ⊂ Ω∩∂B(v, δ) and L ⊂ Ω∩∂B(v,R) with the extremal distance between
them no greater than 1

πα log R
δ .

Because ρ(v, δ) ≤ δγ and because of our normalization of Ω, we have

(13) ∪nj=1Rj+M (v) ⊂
(
gv(Ω) ∩ {x+ iy : log 2δ ≤ x ≤ logR}

)
.

The second assumption of the lemma is the immediate consequence of this inclusion.
Combined with the subadditivity property of extremal distance, (13) implies that

(14)
n∑
j=1

λ̃(j +M,v) ≤ λΩ(l, L) ≤ 1
π
α log

R

δ
≤

α log(10) + 2γαµ+ α A
µ2 (n+ 1)

π
=
An

2π

(
1 +

2ε
µ2

+ o(1)
)
.
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The last equality holds because α = µ2/2 + ε.
On the other hand, the inclusion (13) also implies that

(15)
M+n∑
j=M

Sj(v) ≤ Area of (gv(Ω) ∩ {x+ iy : log 2δ ≤ x ≤ R}) = 2π(log 10+
A

µ2
(n+ 1)+2πγµ) = 2π

A

µ2
n(1+o(1).

Let now x1 ≥ x2 ≥ · · · ≥ xn > 0 be any n positive numbers with x1 + x2 + . . . xn ≤ B. Let
also m ≤ n/2 be the number of xk with xk ≥ 2B

n . Then we obtain the following extension of the
Aritmetic Mean - Harmonic Mean inequality:

(16)
n∑
j=1

1
xj

≥
(
∑n

j=1
1
xj

)(
∑n

j=1 xj)

B
=
n2 + 1/2

∑
i6=j

(xi−xj)2
xixj

B
≥ n2

B
+

n

2B

m∑
j=1

(xj − 2B
n )2

x2
j

Using (16) and (15) for xj = Sj+M (reordered in decreasing order) and B = 2π A
µ2n(1 + o(1))−

2π
∑M+n

j=M aj(v), we get that

(17)
n∑
j=1

A2

µ2Sj+M (v)
≥

(nA)2 + nA
∑n

j=1 S̃j+M (v)
2πAn(1 + o(1))

≥ 1
2π

An

µ2
+

n∑
j=1

S̃j+M (v)

 (1 + o(1))

Now to estimate
∑n+M

j=M Yj(v) =
∑n+M

j=M

(
λ̃(j, v)− A2

Sj(v)µ2 + S̃j(v) + aj(v)
)
, we just subtract the

estimate (17) from (14). �

For the next two lemmas, we will assume that diam Ω ≥ 10. We need to change the normalization
here for the rescaling argument that we use in the proof of Lemma 5 to work. In the proof of
Theorem 2, the estimate will still be applied to domains with diam Ω = 10.

Lemma 4. There exist positive absolute constants σ > 0 and τ > 0 such that if v ∈ ∂Ω and
Y1(v) ≤ e−σkA, then for any v1 ∈ (v + exp(∂R1(v))) ∩ ∂Ω, we have Yj(v1) ≥ τA if 2 ≤ j ≤ k.

Proof. Since diam ∂Ω ≥ 10, the boundary gv(∂Ω) intersects both L1(v) and L2(v).
Let c denote the length of orthogonal projection gv(∂Ω) ∩ R1 to L1. Remark that c = 0 iff the

equality in Lemma 2 is reached. Note that since S̃1(v) ≤ e−σA, we get that S1(v) ≤ 10πA
µ2 for large

enough σ and A. Since the Euclidean distance between Ln(v) and Ln+1(v) is at least A
µ , we can

apply an estimate from [Jen70] to get

(18) e−σkA ≥ Y1(v) ≥ const
(µc)3

A
.

So ∂Ω∩ (v+exp(R1(v))) lies at a distance at most const A
µ exp−

σ
3
kA from a logarithmic spiral with

parameter γ. The distance is less then 1
µe
−kA if σ > 3 and A is large enough. It means that for

v1 ∈ ∂Ω ∩ (v + exp(R1(v))), the boundary spiral-like set v1 + exp(Ri(v1)) is contained in a strip of
the width 1

µe
−kA, so there is no rotation around v1 at this scale.

At this moment we need to consider two cases. In the case µ ≥ 4, we use the fact that Si(v) ≥
3π
4 A ≥ 3

8(2πA). Thus we can estimate S̃i(v) bellow by A(3/8−1/4
3/8 ), so Yi(v) ≥ τA provided τ < 1/3.

On the other hand, in the case µ ≤ 4, Si(v) ≥ 5πA
3 , so A2

µ2Si
≤ 3A

5π . Because Ri(v) consists of
two components with the angular size of each of them at most 3

2π, we get the lower estimate

λ̃(i, v) ≥ (A−4µπ)2

3/2πA > 2A
3π − 10µ ≥ 5A

8π for large enough A. Thus again Yi(v) ≥ λ(i, v) ≥ τA provided
τ < 1

20 .
�

8



For a domain Ω and a ball B of radius 1
µ , let NB,Ω(n, x) denote the maximal number of points

vj inside B ∩ ∂Ω with |vj − vk| ≥ exp(− A
µ2 (n + 1) − 2πγ)) if j 6= k, satisfying

∑n
i=1 Yi(vj) ≤ xµ2

for all j, and v + exp
(
∪nj=1Rj(v)

)
∩ B(v, δ) = ∅. Roughly speaking, NB,Ω(n, x) is the maximal

number of nonintersecting balls at certain distance to v which, by Lemma 3, are the candidates for
having a large harmonic measure and rotation at least γ.

LetN(n, x) = supNB,Ω(n, x), where the supremum is taken over all the domains Ω with diam Ω ≥
10 and all the balls B of the radius 1

µ .

Lemma 5.

(19) N(n, x) ≤ C1(γ)eC2x

for some absolute constant C2 and a constant C1(γ) depending only on γ.

Proof. The combinatorial construction we use here is very much similar to the one from [CM94].
We prove (19) by induction on n. The area counting shows that N(n, x) ≤ C(γ) exp(2n A

µ2 ). So,
for small n (say, for n = 1, 2), the desired inequality is true for large enough C1(γ).

Let us now fix n. Assume that (19) is proved for n− 1.
Fix a ball B of the unit radius and N(n, x) points vj ∈ B1(v0) satisfying the conditions of the

Lemma.
Let ψ = e−σA from Lemma 4 and η = minY1(v), where the minimum is taken over all v ∈ ∂Ω∩B.
Three cases are possible:
(1) η ≥ ψ.
(2) η ≤ ψn.
(3) ψk ≥ η ≥ ψk+1, for some k = 1, . . . , n− 1.

We show that in each of them N(n, x) ≤ C1e
C2x, if C1 and C2 are large enough.

Case 1: η ≥ ψ. In this case for all vj , we have
n∑
i=2

Yi(vj) ≤ µ2 (x− ψ) .

B can be covered by const× exp
(
2 A
µ2

)
balls of radius exp

(
− A
µ2

)
. By rescaling by exp

(
A
µ2

)
, we

get that each of these balls contains no more then N(n− 1, x− ψ) points vj .
So, by the induction hypothesis,

NB,Ω(n, x) ≤ const N(n− 1, x− ψ

µ2
)e2

A
µ2 ≤ const C1e

2 A
µ2 e

C2(x− ψ

µ2 ) ≤ C1e
C2x

provided C2 > AeσA.

Case 2: η ≤ ψn. For some v0 ∈ ∂Ω∩B, we have Y1(v) ≤ ψn, so by Lemma 4, we have Yiv ≥ Aτ ,
2 ≤ i ≤ n for all v ∈ v0 + exp(R1(v0)).

So, if x < Aτ(n − 1) then all the points vj lie inside the ball B(v, e−A). Thus, by rescaling by
eA, we have

NB,Ω(n, x) ≤ N(n− 1, x) ≤ C1e
C2x.

If on the other hand x ≥ Aτ(n− 1), then we can again use the area estimate to get

N(n, x) ≤ const e2nA ≤ C1e
C2x,

provided C2 >
10
τ and C1 is large enough.
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Case 3: ψk ≥ η ≥ ψk+1, for some k = 1, . . . , n− 1. Again we take a point v0 ∈ B with
µ2ψk+1 ≤ Y1(v0) ≤ µ2ψk. As above, by Lemma 4, we have Yi(v) ≥ Aτµ3, 2 ≤ i ≤ k

µ2 for all
v ∈ v0 + exp(R1(v0)).

Since v0 + exp(R1(v0)) is close to the logarithmic spiral with parameter γ, we can cover v0 +
exp(R1(v0) ∩ ∂Ω by const ekA balls of the radius µ2e−kA. Then any point vj either belongs to one
of these balls or to B(v0, e−A). This gives us, by the induction assumption,

NB,Ω(n, x) ≤ N(n− 1, x− ψk+1) + const ekAN(n− k, x− (k − 1)Aτ)

≤ C1e
C2x

(
e−C2ψk+1

+ const ekA−C2(k−1)Aτ
)
≤ C1e

C2x

if C2 > 2eσA and C2τ > 4. �

Proof of Theorem 2. First, let us derive Theorem 2 from (19). We apply the estimate to a domain
with diam Ω = 10µ. Together with Lemma 3, (19) implies that

f(α, γ) = lim sup
n→∞

log
(
N

(
n, C√

γ2+1
Anε

))
√
γ2 + 1(An+ 2π)

≤ C0ε

whenever exp(−A(n+1)
µ − 2πγ)) < δ ≤ exp(−An

µ − 2πγ)). Here C0 is some absolute constant not
depending on γ. Since

α−
√

(α− 1)2 + γ2 =
2α− 1− γ2

α+
√

(α− 1)2 + γ2
≥ 4

(
α− 1

2
− γ2

2

)
= ε ,

Theorem 2 follows from the estimate (19).
�
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