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Abstract. In this paper we establish asymptotic expansion for the integral mixed spectrum of
the basin of attraction of infinity for the polynomials z(z + δ). It allows us to give another prove of
the Ruelle’s expansion for the dimension of the Julia set, as well to estimate the “prevalent” rate
of rotation with respect to the Hausdorff measure of maximal dimension.

1. Introduction

The asymptotic expansion for the Hausdorff dimension of the Julia set of z2 + δz was obtained
by Ruelle in [10], who also proved that it depends analytically on δ. In his proof Ruelle used the
dynamical ζ-function.

It was further improved by Collet, Dobbertin, and Moussa in [6] by the utilization of thermo-
dynamic formalism. Some additional estimates on the asymptotic expansion were given by Baker
and Stallard in [1]. They used the estimates of the spherical derivative of the polynomial z2 + δz.

Let us now recall the definition of the Integral mixed spectrum(see [3] for motivation and prop-
erties of the spectrum).

Let Ω be a simply connected domain, z0 ∈ Ω and φ : D → Ω be the Riemann map with φ(0) = z0,
φ′(z0) > 0.

Definition 1. The integral mixed spectrum of the domain Ω is

mΩ(z) = lim sup
r→1−

log
∫
rT

|φ′z(ζ)|d|ζ|
log 1

1−r

.

In this paper we obtain the asymptotic expansion for the integral mixed spectrum of quadratic
Julia sets.

Theorem 1.

mAδ(∞)(z) =
|z|2|δ|2
16 log2

+
�(zδ)|δ|2|z|2

64 log2
− |z|2||δ|2 cos arg(δ)

32 log2
+ O(|z|2|δ|4),

where Aδ(∞) is the basin of attraction of infinity for the polynomial fδ(z) = z(z + δ).

Combined with the Bowen’s formula it allows us to estimate the Hausdorff dimension of the Julia
sets, re obtaining the asymptotic from [6].

Corollary 1.

d = dim ∂Aδ(∞) = 1 +
|δ|2

16 log2
− |δ|3 cos arg δ

64 log2
+ O(|δ|4)
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Theorem 1 also has an interesting geometric consequence. By [3], we can rewrite the dimension
spectrum (see the definition below) in terms of the integral means spectrum. Then the asymptotic
of the previous theorem allows us to describe the “prevalent” rotation on the Julia set.

Theorem 2. Let κ denote the Hausdorff measure of the full dimension on the Julia set. Then at
κ-a.e. the Julia set behaves like a logarithmic spiral with parameter

γ =
|δ|3

64 log 2
sin arg δ + O(|δ|4),

in the sense that the radial behavior of the Riemann map is

argφ′δ(rζ) ∼ γ log
1

1− r
.

2. Proofs

Let us start with the proof of the corollary 1. We need to start with a few definitions and
statements from [3].

Let x ∈ ∂Ω, δ > 0, Ωδ be the connected component of the set

{y ∈ Ω : |x− y| > δ}
containing x0.

Define the rotation of the domain Ω near x at distance δ as

ρ(x, δ) = exp
(

inf
y∈∂Ωδ,|y−x|=δ

arg(y − x)
)
,

where the branch of the arg is selected so that −π < arg(x0 − x) ≤ π.

Definition 2. Let Ω be a domain with the boundary invariant under hyperbolic dynamics. Then
the dimension mixed spectrum of Ω is defined as

f(α, γ) = dim
{
x ∈ ∂Ω : lim

δ→0

logω(B(x, δ))
log δ

= α; : lim
δ→0

log rho(x, δ)
log δ

= γ

}
.

Here B(x, δ) is a disk of radius δ around x, dim is the Hausdorff dimension.

Theorem 3 ([3]). Let Ω be a Jordan repeller. Then
(1) Integral and dimension mixed spectra are related by a Legendre type transform:

fΩ(α, γ) = inf
z

(αmΩ(z) + (1 − α)�(z) − γ�(z) + α)

mΩ(z) = sup
α,γ

(
fΩ(α, γ)− (1− α)�(z) + γ�(z)− α

α

)
.

(2) fΩ(α, γ) and mΩ(z) are real-analytic.
(3) Either the boundary ∂Ω is real analytic and all the mixed spectra are trivial, or mΩ(z) is a

strictly convex function, fΩ(α, γ) is strictly concave on the domains where it is not equal to
−∞.

In particular, the rotational part of the integral mixed spectrum is nontrivial iff the real
part is nontrivial.

Lemma 1. Let Ω be the basin of attraction of infinity of a hyperbolic polynomial of degree d. Then

mΩ(z) = − 1
log d

P

(
�
(
z̄
logF ′ ◦ φ

logB′

))
− 1.
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Proof of the corollary 1. ∂Aδ(∞) is a quasi circle. So, by Theorem 3.1 from [8] (see also [9]),

mAδ(∞)(d) = d− 1.

Using the asymptotic from Theorem 1, it can be rewritten as

d2|δ|2
16 log2

+
d3|δ|3

64 log 2
− d2|δ|2 cos arg(δ)

32 log2
+ O(d2|δ|4) = d− 1.

The statement of the corollary is just the asymptotic expansion for the solution of the last
equation. �

Let us now prove Theorem 2.

Proof of Theorem 2. As established in [3], the dimension spectrum is a strictly concave function (be-
causemAδ(∞)(z) 
≡ 0, so �2 
= 0). So there is a unique point α0, γ0 with f(α0, γ0) = dimAδ(∞) =: d.
So, by the definition of the dimension spectrum, for any ε

dim
{
z ∈ ∂Aδ(∞) : there exists a sequence rn → 0 such that

lim
n→∞

ρ(z, rn)
− log rn

− γ0| > ε

}
< d.

So to prove the theorem, we need to establish the asymptotic for γ0.
But

f(α0, γ0) = α0m(d)− α0d+ α+ d.

So, the function l(d0, d1) = α0m(d0 + id1) − α0d0 − γ0d1 + d0 + α0 reaches its minimum at
d0 = d, d1 = 0. It means that ∂l

∂d0
(d, 0) = ∂l

∂d1
(d, 0) = 0. Thus

γ0 =
−i∂m
∂d1

(d, 0)

1− ∂m
∂d0

(d, 0)
.

By Corollary 1, d = 1 + O(|δ|2). Hence, by the expansion in Theorem 1,

−i∂m
∂d1

(d, 0) =
|δ|2d2 sin arg δ

64 log 2
+ O(d|δ|4) = |δ|2 sin arg δ

1
64 log2

+ O(|δ|4)
and

∂m

∂d0
= O(|δ|2).

Now the theorem follows from the last two equations. �
We can now turn to the proof of the 1.
To get the asymptotic for the mAδ(∞)(z), let us first get the asymptotic for the Riemann map of

the Aδ(∞).
Let φδ be the Riemann map φδ : D− → Aδ(∞) conjugating z2 + δz and z2:

(1) φ2
δ(z) + δφ(z) = φδ(z2), φ′(∞) = 1.

For the existence of such a map, see, for example, [5], Chapter VIII. Since the map φδ(z) satisfies
the functional equation (1), it is analytic in both z and δ. By the theorems of Mañé, Sad, and
Sullivan (see [7]),Sullivan and Thurston (see [11]) and Bers and Royden (see [2]), the family φδ can
be extended to an analytic family of quasiconformal homeomorphisms of Ĉ.

So we can write
φδ(z) = z + δg1(z) + δ2g2(z) + δ3g3(z, δ),
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where the maps g1, g2 are independent on δ, and g3(z, δ) is bounded independent on δ in the
α-Hölder metric for any α < 1.

Let us draw a few consequences of (1).

Lemma 2.

g1(z2) = z + 2zg1(z)(2)

g2(z2) = g1(z) + 2zg2(z) + g1(z)2.(3)

Proof. By the equation (1),

φδ(z2) = z2 + δg1(z2) + δ2g2(z2) + O(δ3) = φδ(z)(φδ(z) + δ)

=
(
z + δg1(z) + δ2g2(z) + O(δ3)

) (
z + δ(1 + g1(z)) + δ2g2(z) + O(δ3)

)
= z2 + δ(g1(z) + z(1 + g1(z))) + δ2(2zg2(z) + g1(z) + g2

1(z)) + O(δ3)

Now all the statements of the lemma may be obtained by comparing the coefficients of δk

(k = 1, 2). �

Let W (z) =
∑∞

k=0 2−kz2k
be the Weierstrass function.

Lemma 3.

(4) g1(z) = −z
2
W (z).

Proof. Let g1(z) =
∑∞

k=0 ckz
−k. Then, by 2,

∞∑
k=0

ckz
−2k = z +

∞∑
k=0

2ckz1−k.

Hence we have

c0 = −1
2

c2k = 0, k ≥ 1

c2k+1 =
1
2
ck k ≥ 0.

So, by induction we get
c2l−1 = −2−l−1 l ≥ 0

and all other coefficients are equal to 0. �
We say that two α-Hölder functions f1(z), f2(z) on T are equivalent, f1 ∼ f2 if f1(z) = f2(z) +

u(z2) − u(z) for some α-Hölder function u. The main use of this equivalence is the fact that if
f1 ∼ f2, then P (f1) = P (f2). Here the pressure is taken with respect to z �→ z2.

Let us derive a few equivalences for the coefficients in the expansion of φδ.

Lemma 4.
g1(z)
z

∼ −1
z

(5)

g1(z)2

z2
∼ −1

3

(
4g1(z)
z2

+
1
z2

)
(6)

g2(z)
z

∼ 1
3

(
g1(z)
z2

+
1
z2

)
.(7)
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Proof. The relation (5) follows from (2), which can be rewritten as

g1(z2)
z2

− g1(z)
z

=
1
z

+
g1(z)
z

.

To get (6) we write (2) in the form(
g1(z2)
z2

)2

−
(
g1(z)
z

)2

=
3g2

1(z)
z2

+
1
z2

+
4g1(z)
z2

.

If we write (3) in the form

g2(z2)
z2

− g2(z)
z

=
g1(z)
z2

+
g2(z)
z

+
g2
1(z)
z2

,

we get, using (6),
g2(z)
z

∼ −g1(z)
z2

− g2
1(z)
z2

∼ −g1(z)
z2

+
1

3z2
+

4
3
g1(z)
z2

which gives us (7). �

To compute the asymptotic ofmAδ(∞)(z), we will need the asymptotic of ψδ(z) = log
(
z̄
(
φδ(z) + δ

2

))
.

Lemma 5.

(8) ψδ(z) = ψ0(z) + O(|δ|3),
where

ψ0(z) ∼ −1
2

(
δz̄ + δ2

(
1
2
z̄W (z̄)

)
− 3

4
z̄

)
.

Proof.

ψδ(z) = log
(

1 + δz̄

(
g1(z) +

1
2

)
+ δ2z̄g2(z) + O(|δ3|)

)
= δz̄

(
g1(z) +

1
2

)
+ δ2z̄g2(z) − δ2z̄2

2

(
g1(z) +

1
2

)2

+ O(|δ|3).

By (5),

δz̄

(
g1(z) +

1
2

)
∼ z̄

2
− z̄ = − z̄

2
.

By equations (6) and (7)

δ2

(
z̄g2(z)− 1

2
δ2z̄2

(
g1(z) +

1
2

)2
)

∼ δ2
(

3
8
z̄2 +

1
2
z̄2g1(z)

)
= δ2

(
3
8
z̄ − z̄

4
W (z̄)

)
.

This proves the lemma. �
Now we can start the estimation of mAδ(∞)(z).
By Lemma 1,

(9) mAδ(∞)(w) =
1

log 2
P

(
�
(
w̄ log

F ′
δ ◦ φδ

2z

))
− 1

=
1

log 2
P

[
�
(
w̄ log z̄

(
φδ(z) +

δ

2

))]
− 1 =

1
log 2

P (w̄ψδ(z)) .

Let us note that if f1(z) ≡ f2(z), then �(w̄f1(z)) ≡ �(w̄f2(z)). So, by Lemma 5
5



(10) P (w̄ψδ(z)) = P (�(w̄ψ0(z)) + O(|δ|3))

= P

(
−1

2
�
(
δwz + δ2

(
1
2
zwW (z̄) − 3

4
zw

))
+ O(|w||δ|3)

)
.

Let α = arg δ, β = argw, and denote

ψ1(z) = −1
2
�(ei(α−β)z)

ψ2(z) =
1
2
�
(
ei(2α−β)1

2
z̄W (z̄) − 3

4
z̄

)
ψ3(z) =

�(w̄(ψδ(z) − ψ0(z)))
|δ|3 .

Then,

(11) P (w̄ψδ(z)) = P (|w|(|δ|ψ1 + |δ|2ψ2 + |δ|3ψ3)).

Now we use the fact that

(12) P (tΓ) = log 2 + lim
n→∞

1
n

∫
T

etSnΓ(z),

where Sn(Γ)(z) =
∑n

k=0 Γ(z2k
). It follows from the first description of the pressure in [4].

Thus, since the convergence in (12) is uniform, we can write

(13) P (tΓ) = log 2 + t lim
n→∞

1
n

∫
T

SnΓ +
t2

2
lim

n→∞
1
n

∫
T

(SnΓ)2

+
t3

6
lim

n→∞
1
n

∫
T

(SnΓ)3 + O
(
t4 sup

z
|SnΓ(z)|4

)
.

Applying (13) to (11) we get

(14) P (w̄ψδ(z)) = log 2 + |z| lim
n→∞

1
n

∫
T

Snψδ +
|z|2
2

lim
n→∞

1
n

∫
T

(Snψδ)2

+
|z|3
6

lim
n→∞

1
n

∫
T

(Snψδ)3 + O
(
|z|4 sup

z
|Snψδ(z)|4

)
.

Let us note that

lim
n→∞

1
n

∫
T

Snψδ = log 2m′(0) = 0.

So we can rewrite (14) as

(15) P (w̄ψδ(z)) =

log 2 +
1
2

[
|z|2|δ|2 lim

n→∞
1
n

∫
T

Sn(ψ1)2 + |z|2|δ|3 lim
n→∞

1
n

∫
T

Sn(ψ1)(ψ2)
]

− 1
6
|z|3|δ|3 lim

n→∞
1
n

∫
T

Sn(ψ1)3 + O(|z|2|δ|4).

The desired asymptotic for the m follows now from the next lemma.
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Lemma 6. ∫
T

(Snψ1)2 =
n

4
(16)

lim
n→∞

1
n

∫
T

(Snψ1)(Snψ2) = − 1
32

cosα(17) ∫
T

(Snψ1)3 =
3
32

(n− 1) cos(α− β).(18)

Proof. Let us rewrite ψ1 and ψ2

ψ1(eiθ) =
1
2

cos(θ − α+ β)

ψ2(eiθ) =
1
2

∞∑
k=0

ck cos((2k + 1)θ + β − 2α) ck =

{
1
8 , k = 0
2−k−2, k > 0

.

Then

Snψ1(eiθ) =
n∑

k=0

cos(2kθ + β − α).

∫
cos(aθ + b) cos(cθ + d) 
= 0 if and only if a = ±c (for integer a, c).

This implies that ∫
T

Sn(ψ1)2 =
1
4

n∑
k=0

∫
T

cos2(2kθ + β − α) =
n

4

and ∫
T

Sn(ψ1)3 =
1
8

n∑
k1,k2,k3=0

∫
T

cos(2k1θ + β − α) cos(2k2θ + β − α) cos(2k3θ + β − α).

Since cosx cos y = 1
2 (cos(x + y) + cos(x − y)), the integral

∫
T

cos(2k1θ + β − α) cos(2k2θ + β −
α) cos(2k3θ+β−α) is not equal to 0 if and only if 2k1 = 2k2+2k3, or 2k2 = 2k1+2k3 , or 2k3 = 2k1+2k2 .
So ∫

T

Sn(ψ1)3 =
3
8

n−1∑
k=0

∫
T

cos(2k+1θ + β − α) cos(2kθ + 2β − 2α) =
3
32

(n− 1) cos(β − α).

To prove (17), let us recall that by the ergodic theorem,

lim
n→∞

1
n

∫
T

Sn(ψ1)(ψ2) =
∫

T

ψ1ψ2 +
∞∑

k=0

∫
T

ψ1(z)ψ2(z2k
) +

∞∑
k=0

∫
T

ψ2(z)ψ1(z2k
).

Let us note that all the coefficients in front of θ in the expansions of ψ1 and ψ2 are odd, so all
the integrals

∫
T
ψ2(z)ψ1(z2k

) and
∫

T
ψ1(z)ψ2(z2k

) are equal to 0. It means that

lim
n→∞

1
n

∫
T

Sn(ψ1)(ψ2) =
∫

T

ψ1ψ2 = − 1
16

∫
T

cos(θ + β − α) cos(θ + β − 2α) = − 1
32

cosα.

�

Now we plug the expansion from the last lemma in equation (15), and then in equation (9) to
get the asymptotic expansion in Theorem 1.
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