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Abstract. In this paper we introduce the notion of Mixed spectrum of harmonic measure. The
spectrum captures both the local dimension of harmonic measure and the rate of rotation of Green
lines near the boundary. We investigate the main properties of different versions of the spectrum
and prove the interrelation between them. In addition, we establish the real-analyticity of the
spectra for domains with boundary invariant under a hyperbolic dynamics. We show that the
sharp bounds on the mixed spectrum for general bounded planar domains are the same as for the
dynamically-invariant domains. It allows us to establish that the universal bounds for the different
mixed spectra of simply-connected domains are related by a Legendre-type transform. We also
describe all possible spectra of simply-connected domains, and relate sharp bounds on the mixed
spectra for different classes of planar domains to the ones for bounded simply-connected domains.

1. Introduction

Let Ω be a simply connected domain, z0 ∈ Ω, and φ : D → Ω be the Riemann map with φ(0) = z0,
φ′(z0) > 0. In this paper we study fine properties of the rotation of the images of the radii under
the map φ and investigate the relation with the properties of harmonic measure.

For a set K ⊂ ∂Ω the harmonic measure ω(k, z0,Ω) of K at z0 is given by m(φ∗−1(K)), where
m is the normalized Lebesgue measure on the unit circle T, φ∗ is the radial boundary values of φ.
In the rest of the paper we fix some z0 ∈ Ω. The results will not depend on the choice of z0.

We will be interested mainly in the rate of decay, or local dimension of harmonic measure near
a given point z ∈ ∂Ω. Roughly speaking, it is a power α(z) such that the harmonic measure of the

disc B(z, r) of radius r behaves like rα(z) when r → 0. It is easy to see that α(z) does not depend
on the choice of z0. Note that for most of the points α(z) is not well defined.

The “prevalent” rate of decay is closely related to the question of the dimension of harmonic
measure. Namely the fact that for a simply connected domain ω-almost everywhere the rate of
decay is well defined and equal to one is equivalent to the Makarov’s theorem about the dimension
of harmonic measure ([10]). The latter asserts that the dimension of harmonic measure is equal
to 1. Moreover, the theorem provides the precise gauge function for the dimension of harmonic
measure. It states that it is always absolutely continuous with respect to the Hausdorff measure
with the weight

(1) h(t) = t exp

(

C

√

log
1

t
log log log

1

t

)

,

where C is an absolute constant.
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It is known that α(z) is closely related to the rate of growth of the derivative of the conformal
map φ : D → Ω (see [12]). Naively one would expect, for a suitable ζ ∈ D, that

∣

∣φ′(ζ)
∣

∣ ≈
2r

ω(B(z, r))
, and 1 − |ζ| ≈ ω(B(z, r)),

and this can be made precise (see [12]).
Note that this observation allows one to deduce Makarov’s dimension theorem from an estimate

on the growth of the Bloch function applied to the log |φ′(ζ)|.
α(z) has a geometric meaning. If the domain Ω looks like an angle of the opening β near z, then

α(z) = π
β
. Thus the quantity π

α(z)
can be regarded as the generalized angle of Ω near z.

Now let us introduce our second object – rotation. Let z ∈ ∂Ω, δ > 0, Ωδ be the connected
component of the set {y ∈ Ω : |z − y| > δ} containing z0. Define the rotation of the domain Ω near
z at distance δ as

ρ(z, δ) = exp

(

inf
y∈∂Ωδ,|y−z|=δ

arg(y − z)

)

,

where the branch of the arg is selected so that −π < arg(z0 − z) ≤ π.
We need to take an exponent here so that the rotation will scale like the harmonic measure.

Roughly speaking, the rotation measures how many times a curve must rotate around z to reach
the r-neighborhood of z from z0.

We will be interested in the rotation speed around z, γ(z). Roughly speaking, it is such a number

that ρ(x, δ) behaves like δγ(z). γ(z) can be both positive and negative, depending on the direction
of the rotation. In general, γ(z) is again not well defined.

Note that one can measure the rotation along the Green line by computing argφ′. Naively, one
would expect that for some point ζ ∈ D

∣

∣φ′(ζ)−i
∣

∣ ≈ ρ(z, r), and 1 − |ζ| ≈ ω(B(z, r)).

Again one can make this estimate precise in certain situations, for example, for quasi circles with
the small quasiconformal constant.

One can also use this observation to prove that the rotation is trivial almost everywhere by
harmonic measure. To obtain this statement one just needs to apply Makarov’s estimate on the
growth of the Bloch function to the function argφ′(ζ).

Sharp estimates on the growth of argφ′ are given by Goluzin’s rotation theorem, see [5]. It is also
worth mentioning McMillan’s non twisting theorem, which states that for almost all radii either
the image of the radius is very twisted around the endpoint or the Riemann map is conformal at
this point (see [19]).

To give a quantitative metric description of the rotation phenomenon, we introduce the notion
of the dimension mixed spectrum. The latter is a continuum of parameters f(α, γ), α > 0, γ ∈ R,
characterizing “harmonic” dimension (i.e., dimension with respect to harmonic measure) of the
boundary set with a prescribed speed of rotation of Green lines and prescribed decay of the harmonic
measure. Roughly, f(α, γ) is the dimension of the set

Sα,γ = {z ∈ ∂Ω : α(z) = α, γ(z) = γ} .

The precise definition has different versions, involving lim sup or lim inf, and Hausdorff or Minkowski
dimensions (see Section 2).

Dimension mixed spectra provide a multitude of information about the geometry of the ∂Ω
. One can extract from them information about all possible rates of decay and rotation speeds,
prevalent rotation speed and decay of harmonic measure in the sense of Hausdorff measures of
different dimensions.

The motivation for the introduction of the dimension mixed spectrum comes from the multifractal
analysis. The latter was introduced in the middle eighties in a few physical papers, for example, in
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[8]. The idea of the method is that to study properties of the measure, we consider its dimension
spectrum, that is the continuum of parameters characterizing the size of the set where a certain
power law applies to mass concentration. An overview of the method from both mathematical and
physical viewpoints can be found in [7]. The multifractal analysis of the planar harmonic measure
was carried out by Makarov in [13].

Another way to view the mixed spectra is to consider them as a generalization of the pressure
defined in conformal dynamics with the use of machinery of thermodynamic formalism (see [25]).
We discuss this in more detail in section 3.

Yet another motivation for introduction of multifractal spectra comes from the dimension theory
(see [16]).

In Section 2 we also introduce integral mixed spectrum (Definition 2). For the discussion of the
basic properties of the integral mixed spectrum see Section 2.

We also investigate its connections to the ”dual” (in the sense of large deviations) object, the
Minkowski distortion mixed spectrum d(a, b). Roughly speaking, the latter is a two dimensional set
of parameters measuring the Minkowski dimension of the set where logφ′(rζ) has prescribed growth
(see Definition 4). As usual in the theory of large deviations, it is related to the integral mixed
spectrum by a Legendre type transform (Lemma 3). If instead of the Minkowski dimension we

consider the Hausdorff one, we obtain the Hausdorff distortion mixed spectrum d̃(a, b) (Definition
5). It is always no greater then Minkowski distortion spectrum (Lemma 4).

We also obtain the relation between dimension and distortion spectra. Namely, we obtain the
following theorem.

Theorem 1. For any simply connected domain Ω ,

dΩ(a, b) ≥ (1 − a)fΩ

(

1

1 − a
,

−b

1 − a

)

.

It is interesting to compare the theorem with the results of [1].
It was noticed by Carleson in [3] that the harmonic measure on the repellers of certain dynamical

systems is closely related to the underlying dynamics. In [15] the harmonic measure for some Fatou
components was studied. Further study of the harmonic measure of the domains with invariant
boundary was done in [22], [21] and [23], where the harmonic measure was studied using the
dynamics in the neighborhood of unit circle induced by the dynamics of the boundary. On the
other hand, Carleson’s original approach was extended by Makarov in [11] and [12].

All of the spectra defined in the previous section behave nicely for simply connected domains
with the boundaries (or “essential” parts of them) invariant under a hyperbolic dynamic. We call
such domains Jordan repellers. One example of such a domain is the basin of attraction to infinity
of a hyperbolic polynomial. Another example is a snowflake domain, or Carleson fractal. It is
constructed in the following way.

Let P be a polygon (not necessarily convex), and let an interval I contain one of the sides q of
the polygon and does not have any other intersections with P . For each side pi of the polygon not
intersecting I , consider the linear mapping φi with φi(I) = pi and the φi(P ) is facing outside of
the P .

Now let P0 = P ∩ I − q, and

Pn+1 = Pn ∩i1,...,in φi1 . . . φin(P ) − ∩i1,...,inφi1 . . .φin(q).

The Pn is a Jordan curve. Assume that the limit (in the Caratheodory sense, see [19]) of the curves
Pn is also a Jordan curve J. Let now Γ be an analytic curve joining the ends of the I . Assume that
Γ does not intersect the inside of J, and that Γ ∩ I is a C∞ curve. Then we consider the domain
Ω bounded by J ∩ Γ.
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This example is of special importance to us. The reason for this is that any domain can be
approximated, in the sense of mixed spectra, by snowflakes (Theorem 3).

The mixed spectra for Jordan repellers are thermodynamic objects. They all can be defined
in terms of the pressures of some potentials related to the dynamics on the boundaries and the
dimensions of the corresponding Gibbs measures. This fact allows us to use the extensive techniques
of thermodynamic formalism. For example one apply Ruelle-Perron-Frobenius transfer operator,
Ruelle’s ζ-function and Patterson-Sullivan conformal measures to fully understand the relations
between the mixed spectra and their possible behavior. The results obtained by the author in this
direction are summarized in the following theorem.

Theorem 2. Let Ω be a Jordan repeller. Then

(1) Both Hausdorff and Minkowski versions of the dimension mixed spectra for α, γ are equal
to

dim

{

z ∈ ∂Ω : lim
δ→0

ω(B(z, δ))

log δ
= α; lim

δ→0

ρ(z, δ)

log δ
= γ

}

.

(2) The integral mixed spectrum exists as a limit:

mΩ(z) = lim
r→1−

∫

rT
|φ′(ζ)z|dζ

log 1
1−r

.

(3) Integral and dimension mixed spectra are related by a Legendre type transform:

fΩ(α, γ) = inf
z

(αmΩ(z) + (1 − α)<(z) − γ=(z) + α)

mΩ(z) = sup
α,γ

(

fΩ(α, γ)− (1− α)<(z) + γ=(z)− α

α

)

.

(4) Both Hausdorff and Minkowski versions of the distortion mixed spectra for a, b are equal to

dim
{

ζ ∈ ∂D : limr→1
log φ′(rζ)
log(1−r)

= a+ ib
}

.

(5) fΩ(α, γ), dΩ(a, b), and mΩ(z) are real-analytic.
(6) Either the boundary ∂Ω is real analytic and all the mixed spectra are trivial, or mΩ(z) is

a strictly convex function, fΩ(α, γ) and dΩ(a, b) are strictly concave on the domains where
they are not equal to −∞.

In particular, the rotational part of the integral mixed spectrum is nontrivial iff the real
part is nontrivial.

The last statement of the theorem implies, in particular, that, unless the boundary of Jordan
repeller is an analytic curve, it has nontrivial rotation. On a large scale it can be seen on computer
pictures, but on a small scale it goes undetected by a computer. The theorem is proved in Section
3.

In Section 4 we investigate the sharp bounds for mixed spectra or universal spectra.

Definition 1. Let Υ be a set of simply connected domains (or, equivalently, their Riemann maps).
We define the Universal Integral Mixed Spectrum for Υ by

M(Υ)(z) = sup
Ω∈Υ

mΩ(z).

By the same token we can define universal mixed Hausdorff dimension (F̃(Υ)(α, γ)), universal

mixed Minkowski dimension (F(Υ)(α, γ)), universal mixed Hausdorff distortion (D̃(Υ)(a, b)), and
universal mixed Minkowski distortion (D(Υ)(a, b)) spectra for Υ.

The main tool in the chapter is fractal approximation.
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The first result of this type was obtained by Carleson and Jones in [4]. They proved, in our
notation, that M(Bnd)(1) = M(Snowflakes)(1). In [13] Makarov obtained this equality for an arbitrary
real t. We prove the following theorem

Theorem 3.

M(Bnd)(z) = M(Snowflakes)(z),

where (Bnd) is the set of all bounded simply connected domains, (Snowflakes) is the set of all
snowflakes.

The theorem combined with the results of Section 2 shows that universal mixed spectra have
some of the properties of the spectra of a snowflake.

First of all, it provides the fractal approximation for other spectra.

Corollary 1.

D̃(Bnd)(a, b) = D(Bnd)(a, b) = D(Snowflakes)(a, b),

F(Bnd)(α, γ) = F̃(Bnd)(α, γ) = F(Snowflakes)(α, γ).

It also shows that relations between the universal spectra are the same as in the case of a
snowflake.

Corollary 2.

F(Bnd)(α, γ) = inf
z

(

αM(Bnd)(z) + (1 − α)<(z) − γ=(z) + α
)

M(Bnd)(z) = sup
α,γ

(

F(Bnd)(α, γ)− (1 − α)<(z) + γ=(z)− α

α

)

D(Bnd)(a, b) = (1 − a)F(Bnd)

(

1

1 − a
,−

b

1− a

)

.

The theorem also has another interesting consequence, allowing us to give another characteriza-
tion of the universal integral mixed spectrum.

Corollary 3.

M(Bnd)(z) = sup
bounded Ω

lim inf
r→1−

log
∫

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

.

Moreover, from the proof of the theorem, we can extract yet another description of the universal
integral mixed spectrum

Corollary 4.

M(Bnd)(z) = lim sup
r→1−

sup
diamΩ≤1

log
∫

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

.

Some bounds for the universal integral means spectrum were obtained by Pommerenke in [17],
[18]. See [20] for the list of known bounds. Some of them can be extended to the rotation case,
although we are not doing it here.

The fractal approximation also allows us to describe all possible integral mixed spectra of bounded
domains.

Theorem 4. The following are equivalent:

(1) m(z) is a convex, nondecreasing in every direction, nonnegative function, m(0) = 0, m(z) ≤
M(Bnd)(z), and all tangent plane to the graph of w = m(z) intersect w-axes within the
interval [0, 1].

(2) m(z) is an integral mixed spectrum of a bounded simply connected domain.
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For the classical integral means spectrum such a theorem was established in [13].
Another application of the fractal approximation is the description of the universal integral mixed

spectra of unbounded domains.

Theorem 5.

M(Unb)(z) =

{

M(Bnd)(z), <z ≤ 0

max
(

M(Bnd)(z), (1 + 2 cos(arg z))z − 1)
)

, <z > 0

Note that the rotational part of the universal spectrum is the same for bounded and for un-
bounded domains.

We also obtain descriptions for the universal integral mixed spectra for m-symmetric and α-
Hölder domains. In the case of the integral means spectrum such estimates were obtained by
Makarov and Pommerenke in [14].

One can define the mixed spectra for non simply connected domains using the Green map instead
of the Riemann map.

For regular fractals these spectra behave nicely, but even in the case of polynomial hyperbolic Ju-
lia sets some results of the simply connected case do not hold – we need to exclude some exceptional
sets related to critical points.

It is not even known if we have nontrivial universal bounds.
It looks natural to try the technique of [9] to answer this question and even to establish an

analogue of Theorem 3. Note that in [13] this method was used to establish fractal approximation
for the dimension spectrum of non simply connected domains.

Furthermore, we believe that the universal bounds for the rotation spectrum for non simply
connected domains are the same as for the simply connected (this is definitely wrong for the mixed
spectrum).

2. Basic objects and their properties

In this section we introduce three types of mixed spectra. The first, integral mixed spectrum
characterize the growth of the integral means with complex exponent of the derivative of a univalent
map on D . The second, distortion mixed spectrum, reflects the behavior of the derivative of a
univalent map. The third spectrum, dimension mixed spectrum, is more geometrical and reflects
the rotation of a simply connected domain in the neighborhood of a boundary point, as well as the
decay of harmonic measure.

We also explore the interrelations between them.

2.1. Spectra related to the Riemann map. Let Ω be a simply connected domain and φ : D → Ω
its Riemann mapping.

Definition 2. The integral mixed spectrum of the domain Ω is

mΩ(z) = lim sup
r→1−

log
∫

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

.

Remark. Since Ω is a simply connected domain, we can select a branch of φ′z(ζ) in the domain,
and the value of the limit in Definition 2 does not depend on the branch selected. It also does not
depend on the Riemann map chosen.

Let us also introduce a measure of the growth of the integral mixed spectrum at infinity.

Definition 3. Let θ ∈ [0, 2π]. The characteristic of the domain Ω in the direction θ is

kΩ(θ) = lim
t→+∞, t∈R

mΩ(teiθ)

t
.
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The following lemma ensures the existence of the limit and describes some basic properties of
the integral mixed spectrum.

Lemma 1. (1) mΩ(z) is a convex, nondecreasing in every direction, nonnegative function,
mΩ(0) = 0.

(2)

(2) kΩ(θ) = lim sup
|z|→1−

<(eiθ logφ′(z))

log 1
1−|z|

.

(3)

(3) kΩ(θ)t− 1 ≤ mΩ(teiθ) ≤ kΩ(θ)t.

Proof. Convexity easily follows from the Hölder inequality:
∫

rT

|φ′
az1+(1−a)z2(ζ)|d|ζ| ≤

(∫

rT

|φ′
z1(ζ)|d|ζ|

)a(∫

rT

|φ′
z2(ζ)|d|ζ|

)1−a

.

Since
∫

rT
logφ′(ζ)d|ζ| = logφ′(0) and logφ′ is a Bloch function, the measure of l{ζ ∈ rT :

|φ′(ζ)z| > C(φ, z)} ≥ C1(φ, z), for some constants C, C1, depending only on φ and z. So mφ(z) ≥

limr→1−
logCC1

log 1
1−r

= 0.

Now let z′ = az for some real a > 1. We have
∫

rT

|φ′
z′

(ζ)|d|ζ| ≥

∫

ζ∈rT:|φ′(ζ)z′|>1
|φ′

z′
(ζ)|d|ζ| ≥

∫

ζ∈rT:|φ′(ζ)z|>1
|φ′

z
(ζ)|d|ζ| ≥

∫

rT

|φ′
z
(ζ)|d|ζ| − 2π .

It implies that mΩ(z′) ≥ mΩ(z).
Let k′(θ) be defined by the right part of (2). Let us prove (3) with k′ instead of k. It would

imply that k′(θ) = limt→+∞, t∈R

mΩ(teiθ)
t

= kΩ(θ).
The right inequality in (3) follows from

∫

rT

|φ′
z
(ζ)|d|ζ| ≤

∫

rT

exp

(

sup
rT

<(z logφ′(ζ))

)

d|ζ|

logφ′ is a Bloch function, so

l

{

ζ ∈ rT : <(z logφ′(ζ)) > sup
rT

<(z logφ′(ζ))− C

}

>
C1

1 − r

for some independent on r positive constants C and C1 . So

∫

rT

|φ′
z
(ζ)|d|ζ| ≥

C1

1 − r
e−C exp

(

sup
rT

<(z logφ′(ζ))

)

.

That implies the left inequality in (3).
�

Now let us describe a “dual” (in the sense of large deviations) to the integral mixed spectrum.

Definition 4. The Minkowski distortion mixed spectrum of the domain Ω is

dΩ(a, b) = lim sup
a1→a,b1→b

lim sup
r→1−

log l(la1,b1)(r)

log 1
1−r

+ 1,

where
7



la1,b1(r) =

{

ζ ∈ T : log(φ′(rζ)) lies in the same quadrant as a+ ib,

and
|log |φ′(z)||

log 1
1−r

> |a|,
|arg(φ′(z))|

log 1
1−r

> |b|

}

.

Remark. Roughly speaking, for positive a and b, d(a, b) is the Minkowski dimension of the set where

|φ′(rζ)| grows faster then
(

1
1−r

)a

, and arg φ′(rζ) grows faster then blog 1
1−r

. For other a and b the

“naive” definition is just a mirror reflection of the previous description.
Also note that here, again, the definition is independent of the choice of the branch of arg(φ′(z)).
In addition, one can conclude that the value of dΩ(a, b) does not depend on the choice of φ. This

also follows from Lemma 3 below.

Let us summarize a few easy properties of the Minkowski distortion mixed spectrum.

Lemma 2. (1) For any a, b either dΩ(a, b) ≥ 0 or dΩ(a, b) = −∞.
(2) If (a, b) lies in the same quadrant as (a1, b1) and, in addition, |a| ≥ |a1|, |b| ≥ |b1|, then

d(a, b) ≤ d(a1, b1).
(3) If |a| > 3 or |b| > 1, then dΩ(a, b) = −∞.
(4) dΩ(0, 0) = 1, dΩ is a concave function on the set {a, b : dΩ(a, b) > 0}.

Proof. The first statement follows from the boundness of the Bloch norm of the derivative of the
conformal map (so if l(la1,b1) > 0, then l(la2,b2) >

C
1−r for some C > 0 and a2 = a1+a

2 , b2 = b1+b
2 ).

The second statement is evident from the definition.
The third statement follows from the standard growth estimate and Goluzin’s inequality. Let us

note that for a bounded Ω we can replace |a| > 3 by |a| > 1.
The fourth statement follows from Lemmas 3 (see below) and 1.

�

The integral mixed spectrum and Minkowski distortion mixed spectrum are related by a Legendre
type transform. More precisely,

Lemma 3.

mΩ(z) = sup
a,b

(dΩ(a, b) + a<z + b=z − 1)

dΩ(a, b) = inf
z

(mΩ(z) − a<z − b=z + 1)

Proof. Note that

∫

la1,b1
(r)

|φ′
z
(ζ)|d|ζ| ≥ l(la1,b1) max

(

(

1

1 − r

)a1<z+b1=z

, 1

)

.

It implies the “ ≥′′ inequality in the first equation, and the “ ≤′′ inequality in the second one.
To prove the second statement, let us note that by the theory of large deviations for Bloch

martingales,

log

∫

rT

|φ′
z
| − a<z − b=z + 1

is the entropy function for the Bloch martingale M generated by log φ′ (see [6], Chapter II). Since
d(a, b) is the distribution function for the

∑n
k=0 Mk, the lemma is equivalent to the large deviation

property for the Bloch martingales. This fact is well known (see [12] for the discussion).
�
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Let us also define the Hausdorff version of dΩ(a, b).

Definition 5. The Hausdorff distortion mixed spectrum of the domain Ω is

d̃Ω(a, b) = dim{lda ∩ lrb},

where dim is, as usual, the Hausdorff dimension,

lda =







dim{ζ ∈ T : lim supr→1−
log |φ′(rζ)|

log 1
1−r

≥ a}, a ≥ 0

dim{ζ ∈ T : lim infr→1−
log |φ′(rζ)|

log 1
1−r

≤ a}, a < 0
,

lra =







dim{ζ ∈ T : lim supr→1−
argφ′(rζ)

log 1
1−r

≥ b}, b ≥ 0

dim{ζ ∈ T : lim infr→1−
argφ′(rζ)

log 1
1−r

≤ b}, b < 0
.

As usual, the Minkowski spectrum is larger.

Lemma 4.

d̃Ω(a, b) ≤ dΩ(a, b)

for any simply connected domain Ω.

Proof. Let us fix a, b with d̃Ω(a, b) ≥ 0. It is enough to prove the lemma only for such values of
a, b. To simplify the notation, we assume that a > 0, b > 0. The proof for the other values of a, b
is the same. Fix positive a1, b1 with a1 < a, b1 < b.

For every ζ ∈ lda ∩ lrb there exist a sequence rn(ζ) such that

lim sup
n→∞

log |φ′(rn(ζ)ζ)|

− log(1 − rn)
≥ a

and

lim sup
n→∞

arg φ′(rn(ζ)ζ)

− log(1 − rn)
≥ b.

Using logφ′ ∈ B we can assume that rn(ζ) = 1 −
(

1
2

)kn(ζ) , since h(
(

1
2

)n
,
(

1
2

)n+1
) is bounded

independently on n.

Again from log φ′ ∈ B, we get that for large enough n, the interval of the length C(1 −
(

1
2

)kn(ζ))

(for some C > 0) with the center ζ belongs to la1,b1(1 −
(

1
2

)kn(ζ)
).

So, by the covering lemma (see, e.g., Chapter 1 of [26]) for any fixed N we can select a family of
non intersecting balls B(ζn, rn) with the centers in lda∩ lrb, such that their doubles (the balls with
the same center and twice the radius) cover lda ∩ lrb, each ball is a subset of some la1,b1(1−

(

1
2

)n
)

for some n > N .
Now we take any c > dΩ(a, b). Then, for large enough N ,

l
(

la1,b1

(

1 −
(

1
2

)n))
≤
(

1
2

)n(1−c+ε)
.

So
∑

rc
n ≤ ∞, and, since N and c were arbitrary, d̃Ω(a, b) = dim lda ∩ lr(b) ≥ dΩ(a, b).

�

2.2. Geometric spectra, rotation. Let us now define more geometric objects, which reflect the
local behavior of the boundary of a given simply connected domain.

Let Ω again be a simply connected domain and z0 a fixed point in Ω .
The following lemma shows that the angle used in the definition of rotation is “almost” inde-

pendent on the point from the δ-neighborhood of x.

Lemma 5. If y1, y2 ∈ ∂Ωδ ∩B(z, δ) then | arg(y1 − x) − arg(y1 − x)| < 2π.
Here we again take the branch of the arg with −π < arg(z0 − x) ≤ π.

9



Proof. Let Γ1 and Γ2 be two non intersecting curves joining z0 with y1 and y2 respectively and
lying inside Ωδ. We can select an arc C of {|y − x| = δ} joining y1 and y2 such that Γ1 ∪ Γ2 ∪ C
does not contain x in the bounded component. Then | arg(y1 − x) − arg(y1 − x)| is equal to the
angular length of C, which is less than 2π.

�

Now let us define two refinements of the dimension spectra from [13].

Definition 6. The Minkowski dimension mixed spectrum of a simply connected domain Ω is

fΩ(α, γ) = lim
η→0

lim sup
δ→0

N (δ, α, γ, η)

log 1
δ

,

where N (δ, α, γ, η) is a maximum number of disjoint balls Bn of radii δ with the centers zn ∈ ∂Ω
and δα+η ≤ ωΩBn ≤ δα−η, δγ+η ≤ ρ(z, δ) ≤ δγ−η.

Definition 7. The Hausdorff dimension mixed spectrum of a simply connected domain Ω is

f̃Ω(α, γ) = lim
η→0

dimEη,

where Eη is a set of points z ∈ ∂Ω, for which there exists a decreasing to zero sequence of radii

δj with δα+η
j ≤ ωΩB(z, δj) ≤ δα−η

j , δγ+η
j ≤ ρ(z, δj) ≤ δγ−η

j .

Here, again, the Minkowski spectrum is larger than the Hausdorff one.

Lemma 6. For any simply connected domain Ω,

fΩ(α, γ) ≥ f̃Ω(α, γ).

The proof of the lemma is practically identical to the proof of Lemma 4.
In fact, one can define yet another version of the distortion spectrum, replacing rotation of the
argument by geometric rotation.

2.3. Dimension and distortion spectra: relations. In this section we prove Theorem 1.
Let us note that using Lemma 3 one can rewrite the Theorem as

Corollary 5.

fΩ(α, γ) ≤ inf
z

(αmΩ(z) + (1 − α)<(z) − γ=(z) + α)

mΩ(z) ≥ sup
α,γ

(

fΩ(α, γ)− (1 − α)<(z) + γ=(z)− α

α

)

.

To prove Theorem 1 we need the following technical lemma.

Lemma 7. For all ζ ∈ T, if φ(ζ) = limr→1 φ(rζ) exists, then

∣

∣

∣

∣

∣

lim sup
r→1−

argφ′(rζ)

log 1
1−r

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

lim sup
r→1−

arg
(

φ(rζ)−φ(ζ)
z

)

log 1
1−r

∣

∣

∣

∣

∣

∣

.

Proof. To prove the lemma let us consider the map g(z) = log(φ(rζ)− φ(z)).
For t < 0 let r(t) be the first r for which =φ(rζ) = t.
Then it is enough to prove the statement of the lemma only for r(t), since for all other r we have

|log 1
1−r

| > log 1
1−r(t)

.

We can join the point g(r(t)ζ) with g(0) by the segment of the line =z = t and then by some
curve V non intersecting {g(rζ), 0 ≤ r ≤ r(t)}. Since g(ζ) exists, V have bounded independently

10



on r(t) rotation around g(0). So we can select V with bounded rotation of the tangent. So, since
the total rotation of the tangent along V ∪ {g(rζ), 0 ≤ r ≤ r(t)} is 2π, arg g′(r(t)ζ) is bounded
independently on t. But arg g′(r(t)ζ) = arg φ′(r(t)ζ)− arg φ(r(t)ζ), which implies that for r = r(t)
the right and left side of the equality of the lemma are equal up to the constant. It implies the
lemma.

�

Proof of the Theorem 1. Let us fix a, b. It is enough to only consider the case b ≥ 0.
By Theorem 3.1 from [13],

(4) dΩ(a, 0) ≥ sup
b

(1 − a)fΩ

(

1

1− a
,−

b

1− a

)

.

To prove the theorem we construct a domain Ω′ with

(5) dΩ′(a, b) = dΩ′(a, 0) = dΩ(a, b),

and

(6) sup
a′≥a

fΩ′

(

1

1 − a′
,−

b

1− a

)

≥ fΩ

(

1

1 − a
,−

b

1− a

)

for some ε1 > 0.
Then the theorem will be a consequence of (4).
Let α = 1

1−a
, γ = − b

1−a
.

Now fix some η > 0 and let Υ be the family of balls of radius 1
2n from the definition of fΩ(α, γ).

Add a few balls Υ′ to the family to make Υ ∩ Υ′ the maximum disjoint set of balls with δα−η ≤
ω(B) ≤ δα−η. Replace ∂Ω ∩ B′ by an analytic curve for any B′ ∈ Υ′. Then for any ball B ∈ Υ we
have ρ(B) ≤ δγ , ω(B) ≥ δ−eta.

Now we execute the construction for n = 1, 2, . . . . The resulting limit domain is Ω′.
By the construction, it satisfies (6).
Also by the construction, Ω′ ⊂ Ω, so its Riemann map φ′ can be decomposed into φ ◦ ψ, where

ψ : D 7→ D is univalent. Thus equation (5) holds because such maps ψ can not increase the
Hausdorff dimension (see [19]), and because of Lemma 7.

�

Remark. The equality in the inequality of the Theorem 1 does not hold for all parameters a, b and
all simply connected domains. See [13] for an example. Note, however, that for small a and b the
equality always holds.

2.4. Auxiliary results.

Lemma 8. Let bounded domains Ωn have integral mixed spectra mn. Then there exists a domain
Ω with mΩ(z) = convex hull of {supnmn(z)}.

The Legendre-type relation from the Lemma 3 allows us to restate this for the distortion spec-
trum.

Corollary 6. Let bounded domains Ωn have Minkowski distortion mixed spectra dn. Then there
exists a domain Ω with

dΩ(a, b) = Concave hull of the set {sup
n
dn(z)}.

11



Proof. Since rescaling does not change the distortion spectrum, we can always assume that

diamΩn <
1

2n
.

Let φn be a Riemann map of the domain Ωn. Denote ψ(z) =
√

φ(z2) be the symmetrization of the

φ. Let Γ be the domain =z ≥ −1
2

√

1− (<z)2. Let Ω′
n = ψ(Γ ∩ D). Then dΩ′

n
(a, b) = dΩn(a, b).

Moreover, all of the distortion spectrum is concentrated on ψ(T ∩ {<z > 0}).
Let us now consider the domain Ω obtained by attaching all Ω′

n to the non intersecting arcs of
tn of T through the “tubes” joining the central halves of the arcs with the ψ(∂Γ∩<z < 1

2). We can
select these tubes to have C∞ tangency in all the points of the intersection with the T and ∂Ω′

n.
Now let us consider a Riemann map φ of Ω . Let Ψn = φ−1(Ω′

n) and let γn be a Riemann mapping
of Ψn. Then the restriction φ|Ψn is equal to ψn ◦ γ−1

n . Since γn(T ∩ ∂Ψn) ⊂ T, the restriction φ|Ψn

has the same distortion spectrum as ψn. Since ∂Ω− ∪∂Ωn is smooth, it implies the Lemma.
�

3. Domains with fractal boundaries

In this section we investigate a class of domains with a “nice” behavior
of the mixed spectra. We use thermodynamic formalism to investigate the behavior of the spectra

and relations between them.

3.1. Definitions, basic notation.

Definition 8. Let Ω be a simply connected domain with the boundary ∂Ω. Let ∂ be a subarc of ∂Ω.
∂ is called a Jordan repeller if there exists a partition of ∂ into a finite number of non intersecting
subarcs ∂1, ∂2, . . . , ∂n (Markov partition) and a piecewise univalent (but not necessary onefold) map
F , and for each ∂j there exists a neighborhood Uj ⊃ ∂j and a univalent map Fj : Uj → C such that

(1) F |∂j = Fj.
(2) (Geometry invariance) Fj(Ω ∩ Uj) ⊂ Ω.
(3) (Boundary invariance) Fj(∂Ω ∩ Uj) ⊂ ∂Ω.
(4) (Markov property) The image of each ∂j is a union of the finite set Aj of the arcs ∂k:

Fj(∂j) = ∪k∈Aj
∂k.

(5) (Expanding) ∃n0 : infz∈∂ |Fn0 (z)| > 1, where Fn0 means the n0th derivative of F .
(6) (Mixing) For any open V with V ∩ ∂ 6= ∅, there exists n such that the nth iteration of F

maps V ∩ ∂ onto the whole ∂.

Remark. Note that F can be multifold only near the ends of the arcs ∂j. For our constructions the
existence of a countable exceptional set will be unimportant.

Example 1. Mixing repeller with respect to a map f is a Jordan curve ∂ which is F -invariant
and for which F |∂ is expanding. Then ∂ is a Jordan repeller (see [25]). One example of a mixing
repeller is a connected polynomial hyperbolic Julia set.

Another important example is a snowflake domain, defined in the introduction.

Dynamics on the boundary of a Jordan repeller. The Markov property of the map F allows us to
define a transfer matrix D = (Dij) for the Markov partition:

Dij =

{

1, if j ∈ Ai

0, if j /∈ Ai
.

The mixing property means that for some n > 0, all the entries of Dn are positive.
12



We consider the space Σ(D) of one-sided sequences x = (x1, x2, . . .) consisting of numbers
1, 2, . . . , n with Dxi,xi+1 = 1 for all i. The one-sided shift operator S on ΣD is defined by
S(x1, x2, . . . ) = (x2, x3, . . . ).

It is known (see [12]) that there is one-to-one (up to the countable number of points) map between
Σ(D) and ∂ conjugating F and S. The map allows us to use the thermodynamic formalism to
investigate the properties of the Jordan repeller. The correspondence is constructed as follows.

The cylindrical sets are the subsets of ΣD of the form X = (x1, x2, . . . , xk) = {y ∈ Σ(D) : yi =
xi; i = 1, 2, . . . , k}. k = |X | is a rank of the cylindrical subset. For every cylindrical set X , let
∂X = F−1

x1
. . .F−1

xn
∂xn and by UX = F−1

x1
. . .F−1

xn
Uxn . By δ(X) we denote the diameter of UX . By

the expanding property, lim|X |→∞ δ(X) = 0, so for each x ∈ Σ(D), the limk→∞ U(x1,x2,...,xk) =
limk→∞ ∂(x1,x2,...,xk) is a point, which corresponds to the point x ∈ ΣD.

Let φ : D → Ω be a Riemann map of Ω . It will be convenient for us to assume that z0 = φ(0) lies
in the intersection of Fn0Ui for some large n0. Because of the mixing we can select this intersection
to be nonempty.

The map B = φ−1 ◦ F ◦ φ maps T onto itself. By the symmetry it can be extended into some
neighborhood of T. We denote TX = φ−1∂X , zX = zTX

, ζX = ζTX
, wX = φ(zX). Also let T = φ−1∂.

By ω(X) we denote the harmonic measure ωΩ(UX , z0). Let ρX be the rotation ρ(φ(ζX), δ(X)).
The following Lemma connects the Riemann map φ and the geometry of the boundary.

Lemma 9. (1) |φ′(zX)| � δ(X)
ω(X)

.

(2) |(φ′)−i(zX)| � ρ(X).
The constants here depend only on the repeller.

Proof. The first statement is proved in [12].

To prove the second let us observe that ρ(X) � earg(φ(zX)−φ(ζX)). In view of the invariance of
dynamics, argφ′(z)− arg(φ(zX) − φ(ζX)) is bounded. That implies the second statement. �

Let x ∈ T and not an end of some TX define ψ(x) = − log |F ′(φ(x))|, χ(x) = − log |B′(x)|.
Since the dynamics B and F are both expanding, the functions ψ and χ can be extended to the
Hölder functions on the whole circle. So in a neighborhood of T , the harmonic conjugate u to
the v = ψ − χ is well-defined and Hölder on the circle (because harmonic conjugacy maps Hölder

functions to Hölder). We can take u = − arg F ′(φ(x))
B′(x)

.

Let us note that by the argument principle,
∫

T
udl = 0.

Let us now extend the relations established in Lemma 9.

Lemma 10. For any x ∈ φ−1(UX), |X | = n, we have

(1) ω(X) � exp
(

∑n−1
j=1 χ(Bjx)

)

.

(2) δ(X) � exp
(

∑n−1
j=1 ψ(Bjx)

)

.

(3) ρ(X) � exp
(

∑n−1
j=1 u(B

jx)
)

.

Here the constants depend only on the Jordan repeller.

Proof. The first two relations are proven in [12].
Let us prove the third one.
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By the previous lemma,

(7) log ρ(X) = <(−i log(φ′(zX))) + O(1)

= arg(φ′(Bn(B−n(zX)))) + O(1) =
n−1
∑

j=1

u(BjzX) + O(1).

Since u is Hölder, we have for two x1, x2 ∈ UX

n−1
∑

j=1

u(Bjx1) −
n−1
∑

j=1

u(Bjx2) ≤
n−1
∑

j=1

qn ≤ C.

It implies the last statement of the Lemma.
�

3.2. Mixed spectra of a Jordan repeller: thermodynamics interpretation. Here we use
the standard thermodynamic formalism to describe the mixed spectra for Jordan repellers. See [2]
for an extended discussion.

Let Γ be a Hölder function on Σ(D) (i.e., there exists a Q < 1, such that |Γ(x)− Γ(y)| ≤ qn for
all x, y with xi = yi, (1 ≤ i ≤ n)).

Let SnΓ(x) =
∑n−1

k=0 Γ(Skx).
Then there exists a limit

(8) P (Γ) = lim
n→∞

1

n
log

∑

|X |=n

eSnΓ(x),

where we can take any x ∈ X . The value of P (Γ) is called a pressure of Γ.
Another description of the pressure is through the Perron-Frobenius operator. The Perron-

Frobenius operator with the weight Γ is the operator on

Lf(x) =
∑

y∈T−1x

f(y)eΓ(y).

eP (Γ) is a maximal simple isolated eigenvalue of the Perron-Frobenius operator.
Yet another description is given by the variational principle. It states that

P (Γ) = sup
S-invariant

probability measure µ

hµ +

∫

Σ(D)
Γdµ,

where hµ is the entropy of the measure µ.
In the case of a Hölder continuous function there is only one measure µΓ for which the sup is

reached. It is called the Gibbs measure of Γ. It satisfies the following important condition

(9) µΓ(X) � e−P (Γ)n+SnΓ(x), x ∈ X, |X | = n.

As was shown in the previous section, we may identify the dynamics on the mixed repeller and
(Σ(D), S). So we can consider the Gibbs measures on the Jordan repeller and associated measures
on T.

Let us now define the pressure function for the Jordan repeller ∂ by

p(x, y, z) = P (xθ + yv + zu).

Lemma 10 and equation (9) imply that
14



(10) enP (x,y,z) �
∑

|X |=n

ωx

(

δ

ω

)y

ρz.

Function p(x, y, z) is a real analytic on x, y, z (since it is a maximal isolated simple eigenvalue
of an analytic in x, y, z family of operators). By the standard properties of pressure (see [2]), it is
convex.

Let us observe (see [12]) that p(t0, t0, 0) = 0 for the t0 = dim ∂ = mdim∂, p(1, 0, 0) = 0.
Let σ(y, z) be a Gibbs measure on the T for s(y, z)θ + yv + zu and µ(y, z) be the image of the

σ under φ. The Lebesgue measure on T is equivalent to the σ0,0, so the harmonic measure on ∂ is
equivalent to µ0,0 (see [13]).

For a B-invariant measure, µ the entropy hµ is an
∫

log Jµdµ, where Jµ is the Jacobian of B with
respect to µ.

Lemma 11. For each y, z there exists a unique s(y, z) such that

P (s(y, z), y, z) = 0.

The function s(y, z) is a real analytic function.

Proof. Let us fix x, y, z and consider h(x) = P (x, y, z). Then, by (8),

(11) h′(x) =

∫

θdσy,z ≤ P (θ) − hθy,z = −hθy,z < 0.

Now let us observe that P (x, y, z) → +∞ if x→ −∞, y → −∞, z → −∞, and P (x, y, z) → −∞
if x → +∞, y → +∞, z → +∞. So the solution of the equation P (s(y, z), y, z) = 0 is uniquely
defined and is real analytic on y and z by the implicit function theorem.

�

Let us observe a few properties of s.

Lemma 12. (1) s(0, 0) = 0.
(2) s′y(0, 0) = s′z(0, 0) = 0.
(3) The Hessian of s at (0, 0) is equal to

Hs(0, 0) =

(

T 2 0
0 T 2

)

,

where

T 2 = lim
n→∞

1

n

∫





n−1
∑

j=0

u ◦Bj





2

dµ =
1

n
lim

n→∞

∫





n−1
∑

j=0

v ◦Bj





2

dµ.

(4) If T 2 = 0, then ∂ is a real analytic curve and s ≡ 1. Otherwise, s is strictly convex.

Proof. The first statement follows from p(1, 0, 0) = 0.
To get the second one, we differentiate the equation p(s(y, ), y, z) = 0.
We get

s′y =
p′y
p′x

=

∫

T
vdσy,z

∫

T
χdσy,z

and

s′z =
p′z
p′x

=

∫

T
udσy,z

∫

T
χdσy,z

.
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Since σ0,0 = l and both
∫

T
vdl = 0 and

∫

T
udl = 0 we immediately get the second statement.

Differentiating for the second time we get

s′′y,y = −
(s′y)

2p′′x,x + 2s′yp
′′
x,y + p′′y,y

p′x
(12)

s′′y,z = −
(s′y)(s

′
z)p

′′
x,x + s′yp

′′
x,z + s′zp

′′
x,y + p′′z,y

p′x
(13)

s′′y,y = −
(s′z)

2p′′x,x + 2s′zp
′′
x,z + p′′z,z

p′x
.(14)

Since p is convex and p′x < 0 (see (11)), we see that s is convex.
Now let us consider y = z = 0. Then by (8) and because s′y(0, 0) = s′z(0, 0) = 0,

s′′y,y(0, 0) = p′′y,y = lim
n→∞

1

n

∫

T

(Snu)
2dl(15)

s′′y,z(0, 0) = p′′y,z = lim
n→∞

1

n

∫

T

(Snu)(Snv)dl(16)

s′′z,z(0, 0) = p′′z,z = lim
n→∞

1

n

∫

T

(Snv)
2dl.(17)

Let us observe that U = u+iv can be extended to an analytic function in the disc with U(0) = 0.
So U2 = (u2 − v2) + 2iuv is also an analytic function with U2(0) = 0. The same is true for

(SnU)2 = ((Snu)
2 − (Snv)

2) + 2i(Snu)(Snv). By the mean value theorem it means that

∫

T

(Snu)
2dl =

∫

T

(Snv)
2dl

∫

T

(Snu)(Snv)dl = 0.

That proves the formula for the Hessian at (0,0).
Suppose now that T 2 = 0. Then by the result of Przytycki, Urbański, and Zdunik (see [23]), ∂Ω

is an analytic curve.
Let us consider the case of T 2 6= 0. Suppose that for some y0, z0 and some direction a = (a1, a2)

we have (Hs(y0, z0)a, a) = 0. Consider the function

Φ(t) = p(s(x0, y0) + a1s
′
y(y0, z0)t+ a2s

′
z(y0, z0), y0 + ta1, z0 + ta2).

Then

(18) Φ′′(0) = (Hs(y0, z0)a, a) = 0.

But Φ(t) = P (A+ tB), where A = s(y0, z0)χ+ y0v+ z0u and B = a1s
′
y(y0, z0)t+ a2s

′
z(y0, z0)χ+

a1v + a2u. So (18) implies that

a1s
′
y(y0, z0)t+ a2s

′
z(y0, z0)χ+ a1v + a2u ∼ 0

(see [2]), or a1s
′
y(y0, z0)t+ a2s

′
z(y0, z0)χ ∼ a1v + a2u. It implies, in particular, that Hs(0, 0) = 0,

which gives T 2 = 0, which is a contradiction.
�

The following lemma expresses the integral mixed spectrum of the domain in terms of s.

Lemma 13. (1) mΩ(z) = s(<z,=z) + <z − 1.
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(2) mΩ(z) is a real analytic function.

(3) mΩ(z) = limr→1−
log

R

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

.

Proof. Let us start with the proof of the third statement.
Because logφ′ is a Bloch function, and by the Lemma 9

(19)

∫

(1−2−n)T
|φ′

z
(t+ it̃)|d|ζ| ≡ 2−n(1−t)

∑

ω(X)∼2−n

ρ(X)t̃δ(X)t.

Let

Zn =
1

n
log

∑

ω(X)∼2−n

ρ(X)t̃δ(X)t.

The third statement is equivalent to the existence of the limit
limn→∞ Zn.
The existence of the limit follows from the inequality

Zm+n
≤
∼q|n|Zn + Zm

(see [2]), which is equivalent to the pseudo-Markov property of harmonic measure (see [12]).
To prove the first statement of the lemma, let us observe that for an arbitrary p we can write

∫∫

D

|φ′(z)|(1− |z|)p

as

∞
∑

n=0

2−n(1−t)+p
∑

ω(X)∼2−n

ρ(X)t̃δ(X)t

and as

∞
∑

n=0

∑

|X |=n

ρ(X)t̃δ(X)tω(X)1−t+p.

By the first representation and (19), the
∫∫

D
|φ′′z|(1− |z|)p < ∞ when p > m(t+ it̃ ) − 1 and is

infinite when p < m(t+ it̃ )−1. But by the second one and (10) we get the same with s(t, t̃ )+ t−2
instead of m(t+ it̃ ) − 1.

So s(t, t̃ ) + t− 2 = m(t+ it̃ ) − 1.
The second statement of the Lemma now follows from the previous Lemma.

�

In the case when F is a polynomial of degree d, J is its Julia set, and Ω is the attractor of
infinity, the relation is even simpler.

Lemma 14.

mΩ(z) = −
1

log d
P

(

<

(

z̄
logF ′ ◦ φ

logB′

))

− 1.

Proof. Observe that in this case, χ = log d, so

p(x, y, z) = x log d+ P (yv + zu).
17



So

s(y, z) = −
1

log d
P (yv + zu) = −y −

1

log d
P

(

<

(

z̄
logF ′ ◦ φ

logB′

))

.

Now the Lemma follows from the previous one.
�

Recall that for a probability measure µ, dimµ = inf{dimE : µ(E) = 1}. By the Manning formula

(see [15]), dimµ =
hµ

R

log |B′|dµ
for a B-invariant probability measure µ with positive entropy.

Let us now express the distortion spectrum in terms of the dimensions of some Gibbs measures.

Lemma 15. Let t = t(a, b), t̃= t̃(a, b) be the numbers for which

dΩ(a, b) = mΩ(t+ it̃) − at− bt̃+ 1.

Then

(1) dim σt,t̃ = mΩ(t+ it̃) − at− bt̃+ 1,

(2) σt,t̃-a.e. limr→1
log φ′(rζ)

log 1
1−r

= a+ ib.

Proof. Note that

(20) m′
t(t(a, b) + it̃(a, b)) = a, m′

t̃
(t(a, b) + it̃(a, b)) = b.

Observe that

∫

log |B′|dσt,t̃ = p′x(t, t̃ )

and

h(σt,t̃) = p(s(t, t̃ ), t, t̃ )−

∫

T

(s(t, t̃)χ+ tv + t̃u)dσy,z =

− s(t, t̃ )

∫

T

χdσt,t̃ −

(

t

∫

T

vdσt,t̃

)

−

(

t̃

∫

T

udσt,t̃

)

=

− s(t, t̃)p′x(t, t̃) + tp′y(t, t̃) + t̃p′z(t, t̃).

The last equation together with (20) and Manning’s formula implies the first statement.
To prove the second statement, note that by Lemma 10,

(21) lim
|X |→∞

logφ′(zx)

| log(1 − |zX |)|
= lim

|X |→∞

1
n
(Snu(zX) + iSnu(zX))

1
n
Snχ(zX)

by ergodic theorem
−→

∫

v + iudσt,t̃
∫

χdσs,t
=
p′y + ip′z
p′x

= a+ ib.

�

Now let us give a similar description for the dimension spectrum.

Lemma 16. Let t = t(1 − 1
α
,− γ

α
), t̃= t̃(1− 1

α
,− γ

α
) be as in the previous lemma.

Then

(1) dimµt,t̃ = 1
α
dΩ(1− 1

α
,− γ

α
) = fΩ(α, γ),

(2) For µt,t̃-almost all z limδ→1
log ω(B(z,δ))+i logρ(z,δ)

log r
= α+ iγ.
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Proof. The second statement of the lemma is the immediate consequence of the previous lemma
and Lemma 9.

The formula for the dimµ again follows from the previous lemma and Lemma 9. Combined with
the second statement it implies that

1

α
dΩ

(

1 −
1

α
,−

γ

α

)

≤ fΩ(α, γ),

but by Theorem 1

1

α
dΩ

(

1 −
1

α
,−

γ

α

)

≥ fΩ(α, γ).

�

3.3. Relations between mixed spectra for a Jordan repeller. In this subsection we prove
Theorem 2.

Proof. The first statement of the theorem follows from the Lemma 16.
The second statement of the theorem directly follows from the Lemma 13.
By Lemma 3, d and m are related by the Legendre type transform

dΩ(a, b) = inf
z

(mΩ(z)− a<z − b=z + 1) .

On the other hand, by Lemma 16, 1
α
dΩ(1 − 1

α
,− γ

α
) = fΩ(α, γ). A combination of these two

relations gives the third statement of the theorem.
The fourth statement is the consequence of Lemmas 15 and 16.
Since the Legendre-like transforms relating the mixed spectra of the Jordan repeller preserve the

real analyticity, the fifth statement follows from the Lemma 13.
Since m(t+ it̃ ) = s(t, t̃ ) + t− 1, the strict convexity of mΩ(z) when T > 0 follows from Lemma

12. The Legendre-like relations between the universal spectra imply the concavity of f and d.
If T 2 = 0, Lemma 12 implies that mΩ(z) ≡ 0 and ∂Ω is analytic.
This implies the last statement of the theorem.

�

4. Simply connected domains: universal spectra and fractal approximation

In this section we investigate the properties of the universal mixed spectra. We start with
proving Theorem 3. Then we describe all possible integral mixed spectra by proving Theorem 4.
We conclude the chapter with the description of universal spectra of some classes of plane domains.

4.1. Fractal approximation for the universal spectra of bounded domains. In this sub-
section we establish Carleson-Jones type Theorem 3.

Let us first make an observation.

Remark. Let class Υ have the following property:

φ ∈ Υ ⇒ φ∗(z) = φ(z̄) ∈ Υ.

All the classes we consider have this property.
Then, since mφD(z) = mφ∗(D)(z̄),

M(Υ)(z) = MΥ(z̄).

We also have similar symmetries for all other universal spectra.
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Proof of Theorem 3. Let us fix z and let c < M(Bnd)(z), and C(z) be a large constant described
later.

Pick n and consider a simply connected domain Ω0 with diamΩ0 ≤ 1 and a Riemann map
φ0 such that |

∫

(1− 1
n)T

φ′0
z(ζ)| > C(z)(logn)2cnc. Such a domain exists by the definition of the

universal spectrum.

Let φ(z) = φ0

((

1 − 1
n(log n)2

)

z
)

. Then we still have

(22)

∣

∣

∣

∣

∫

rT

φ′
z
(ζ)

∣

∣

∣

∣

>
C(z)

2
nc(logn)2c

for large n, because

logφ′0 ∈ B.

Let Ω = φ(D). Let also

Γ = φ

({

|z| = 1−
1

n logn

})

, Ω1 = φ

((

1−
1

n logn

)

D

)

, and Ω2 = φ

((

1−
1

n

)

D

)

.

We also denote the Riemann maps of the corresponding domains as φ1 and φ2. These are simply
the sections of the map φ.

Note that, as before, φ1 satisfies (22) with some other constant C(z).
To construct the desired snowflake we modify the domain Ω1 to get a “good” polygon P for

which (22) holds. Then we iterate the polygon through the snowflake construction.

Let m = c1 log(n)n and let the points ζ1, ζ2, . . . , ζm divide the circle
(

1 − 1
n log n

)

T into the

equal intervals. Here c1 is some large absolute constant. By the distortion estimates, the polygon
H generated by joining the images φ(zk), k = 1, . . . , m is not self intersecting, if c1 is large enough.
Moreover, each side of the polygon

has harmonic measure comparable to 1
n logn

. More precisely, for each side hk of H

c2
n logn

≤ ω(hk) ≤
c3

n logn

for some absolute constants c2, c3.
Again by the distortion estimates, we can find a line L, such that L ∩ Ω is an interval of the

length at least c4
n log2 n

, and L ∩ H is one of the sides of H of length at least c5
n log2 n

, with some

absolute constants c4, c5.
Now let I be the unit interval of L containing L ∩H as the middle. Let us check that the
snowflake S obtained by the iteration of I ∪H satisfies mS(z) ≥ c.
First, let us check that S is non intersecting. Because of the self similarity, it is enough to

check that the iterations of H does not intersect L. Let hk be a side of H different from H ∩ L.
Then let us prove that the rescaled copy of Ω attached to hk is contained in Ω. By the snowflake
construction, it would imply that S is contained in Ω. Thus it does not intersect L. The length of

hk is comparable to
φ′

1(ζk)
c1n logn

. Using the Koebe lemma and diamΩ < 1, we get the desired estimate,

provided c1 is large enough.
To obtain the estimate for mS(z) it is enough to check that

lim
k→∞

∫

rkT
|φ′S(ζ)z|dζ

log 1
1−rk

≥ c,

where rk = 1 − 1
nk logk n

and φS is the Riemann map of S.

Let us consider the k-th generation of the snowflake construction. It consists of (m+2)k copies of
H . By the pseudo Markov property of harmonic measure on the snowflake (see [11]), the harmonic
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measure of each of them is ∼qk-equivalent to 1
ck
1nk logk n

. On the other hand, the size of the piece

corresponding to the cylinder X = (x1, x2, . . . , xk) is ∼qk -equivalent to
∏k

j=1 φ
′
1(ζk)

1
ck
1nk logk n

.

It implies that

∫

rkT

|φ′(ζ)z|dζ ∼qk

∫

rk−1T

|φ′(ζ)z|dζ

∫

(1− 1
n)T

|φ′(ζ)z|dζ

which gives us the theorem.
�

Now let us prove the corollaries of the Theorem.

Proof of the Corollary 1. The first statement is a consequence of the fractal approximation ( The-
orem

3), the equality of the Minkowski and Hausdorff dimension spectra for the fractals (Theorem 2),
and the Legendre type relation between distortion and integral spectra (Lemma 3). We also need

to use the fact that for general domains d̃Ω(a, b) ≤ dΩ(a, b) (Lemma 4).
The second equality again follows from the fractal approximation (Theorem
3), the corresponding equality for the fractals (Theorem 2), and the inequality between the

distortion and dimension spectra (Theorem 1).
�

Proof of the Corollary 2. All the statements of the corollary follow from the previous corollary and
Theorem

2.
�

Proof of the Corollary 3. It immediately follows from the fractal approximation and the existence

of the limit limr→1−
log

R

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

for the snowflakes. �

Proof of the Corollary 4. Let

c < lim sup
r→1−

sup
Ω

log
∫

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

.

Then there exists a domain Ω (diamΩ ≤ 1) for which
∫

rT

|φ′
z
(ζ)|d|ζ| > C(z)log

1

1 − r

2c
(

1

1− r

)c

.

So, as in the proof of Theorem 3, we can construct a snowflake Ω1 with mΩ1 ≥ c.
It implies that

M(Bnd)(z) ≥ lim sup
r→1−

sup
Ω

log
∫

rT
|φ′z(ζ)|d|ζ|

log 1
1−r

.

But the inequality in the other direction is evident.
�

4.2. Characterization of all possible mixed spectra. In this subsection we prove Theorem 4.
In view of the Legendre-like relation from Lemma 3, the Theorem is equivalent to the corre-

sponding fact for the Minkowski distortion mixed spectrum.

Corollary 7. The following are equivalent:

(1) d(0, 0) = 1, d(a, b) ≤ D(Bnd)(a, b), for any a, b either d(a, b) ≥ 0 or d(a, b) = −∞, d(a, b) is
a concave function on the set {(a, b) : d(a, b) ≥ 0}.
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(2) d(a, b) is a Minkowski distortion mixed spectrum of a bounded simply connected domain.

Proof of Theorem 4. In fact, instead of the theorem, it will be easier for us to prove Corollary 7
(which, as was mentioned above, is equivalent to the theorem).

The implication 2. ⇒ 1. follows from Lemma 2
Now let us prove the implication 1. ⇒ 2.
First we fix a pair a0, b0 for which D(Bnd)(a, b) ≥ 0 and a nonnegative c ≤ D(Bnd)(a, b) and
construct a domain Ω with

dΩ(a, b) =

{

1 − a
a0

+ a
a0
c, if 0 ≤ a ≤ a0, b ≤

b0
a0
a,

−∞, otherwise.

For this let us pick a snowflake domain Ω1 with dmΩ1(a0, b0) ≥ c. Such a domain exists by
Corollary 1.

Let φ1 be a Riemann map of the domain, and let B be the corresponding dynamics in the
neighborhood of T . By the discussion in Section 3, there exists a B-invariant set E ⊂ T of the

dimension c such that limr→1−
logφ′

1(rζ)

log 1
1−r

= a0 + ib0. In fact, we can take any B-invariant subset

of the dimension c of the set supp σy,z for the corresponding y and z. T − E = ∪kIk for non
intersecting arcs Ik. Since E is B-invariant, we can select a subfamily I = I1, I2, . . . , Im of the
arcs Ik such that for any k Bl(Ik) ∈ I for some l. For each Ik let rnk(Ik) = minlB

l(Ik) ∈ I. Let
us attach to the arc Ik an analytic curve Ak, which lies inside D , has the C∞ tangency with the

T at the endpoints of Ik, and such that ∀θ ∈ Ak : |θ| ≥ 1 − 2−2rnk(Ik)

. Let D1 is the subdomain of D bounded by ∪kAk and E. Let Ω = φ1(D1). Let us prove that Ω
is the domain with the desired spectrum.

Let ψ be a Riemann map of D1. By the conformality criterion from [24], the map ψ is conformal
in all the points of T. So dimψ−1E = dimE.

The Riemann mapping of Ω is given by φ = φ1 ◦ ψ. Then

φ′(rζ) = φ′1(ψ(rζ))ψ′(rζ).

Since ψ is conformal up to the boundary, the supr |φ
′(rζ)| <∞ for ζ /∈ ψ−1E, and

lim
r→1−

log φ′(rζ)

log 1
1−r

= a0 + ib0

for ζ ∈ ψ−1E. It implies that

d̃Ω(a0, b0) =











1, (a, b) = (1, 0)

c, (a, b) = (a0, b0)

−∞, otherwise.

But the sets E and φ−1E are Cantor-like, there Hausdorff and Minkowski dimensions coincides
(see [7]). It implies the required statement for d̃.

Now let us consider a general d(a, b) satisfying the conditions from the first part of the Corollary

7. Let us select the sequence of triples A =
{

(an, bn, cn)
}

such that the graph of d is a concave

span of the set A and the point (0, 0, 1).
By the above construction, for any n there exists a bounded simply connected domain Ωn with

dΩn(a, b) =

{

1 − t+ tcn, if 0 ≤ a ≤ an, b ≤
bn

an
a,

−∞, otherwise.

Now we use Lemma 8 to create the domain with dΩ(a, b) = d(a, b).
�
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4.3. Universal mixed spectra for different classes of domains. We start with the proof of
Theorem 5.

Proof of Theorem 5. The function φα(z) = (1 − z)−2 cosαeiα
(0 ≤ α < π

2 ) is univalent in the unit

disc and maps it onto an unbounded logarithmic spiral Ωα. φ′α(z) = −2 cosαeiα(1− z)−e2iα+2. So,
by the second statement of Lemma 1,

kΩα(θ) = max (0,− cos(θ + 2α) + 2 cos θ) .

If 0 ≤ θ < π
2 , take αθ = π

2 − θ
2 .

Then
M(Unb)(te

iθ) ≥ kΩαθ
(θ) = 1 + 2 cos θ.

So, since M(Unb)(z) = MUnb(z̄) by Remark at the beginning of the Chapter, it is enough to
check that

M(Unb)(z) ≤

{

M(Bnd)(z), <z ≤ 0

max
(

M(Bnd)(z), (1 + 2 cos(arg z))z − 1)
)

, <z > 0
.

To get the inequality we combine the proof of Theorem 5.4 from [13] and Lemma 7.
�

Theorem 4 allows us to characterize the universal spectra for some other classes of domains.
Let us first consider the class (α-Hölder ) of all bounded α-Hölder domains, that is, the domains

for which the Riemann map φ is α-Hölder in the whole D.

Lemma 17. M(α-Hölder )(z) is the convex hull of M(Bnd)(z) and the line w = (1−α)x+ c0, where
c0 = sup{c : (1− α)x+ c ≤ M(Bnd)(x, 0) ∀x}.

Proof. The necessary and sufficient condition for a domain to be α-Hölder is

|φ′(z)| ≤ C(1 − |z|)α−1

(see [5]). So for an α-Hölder domain, kφ(0) ≤ (1 − α). That implies the upper estimate for
M(α-Hölder )(z).

On the other hand, if kφ(0) < 1 − α, then the domain is α-Hölder .
By Theorem 4, for any ε > 0 there exists a domain Ω with mΩ equal to the convex hull of

M(Bnd) and the line (1 − α − ε)x + c0. The Ω is α-Hölder , which implies the lower estimate for
M(α-Hölder )(z).

�

Note that the Hölder restriction did not affect the rotational part of the universal spectrum.
Let us now consider the class SM of domains Ω with mdim∂Ω ≤M . Here, again, the dimensional

restriction does not affect the rotational part of the spectrum.

Lemma 18. For 1 ≤ M < 2, the universal spectrum M(SM)(z) is the convex hull of M(Bnd)(z)

and the point (M, 0,M − 1).

Proof. By Theorem 3.1 from [13], m(mdim∂Ω) ≤ mdim∂Ω − 1. It implies the upper estimate on
M(SM)(z).

On the other hand, by the Theorem 4, if M(α-Hölder )(M, 0) ≥M − 1, there exists a domain Ωα

with the integral mixed spectrum mΩα equal to the convex hull of M(α-Hölder )(z) and the point
(M, 0,M − 1).

The domain Ωα is α-Hölder , so, by Theorem 3.1 from [13], dim∂Ωα = M . The lemma now
follows from limα→1 M(α-Hölder )(z) = M(Bnd)(z).

�
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