Problem 1 of 5.

Let \mathcal{E} be a collection of *n* subsets of a set *X*. Prove that $\mathcal{M}(\mathcal{E})$ is finite. What is the maximal number of elements of $\mathcal{M}(\mathcal{E})$?

Problem 2 of 5.

Let \mathcal{M} be an infinite σ -algebra. Show that ...

- 1. \mathcal{M} contains an infinite sequence of disjoint non-empty sets;
- 2. \mathcal{M} is uncountable.

Problem 3 of 5.

Let (X, \mathcal{M}, μ) be a measure space, and consider a sequence $\{E_j\}_{j\geq 1}$ in \mathcal{M} . Define

$$\liminf E_j = \bigcup_{k \ge 1}^{\infty} \bigcap_{j=k}^{\infty} E_i, \qquad \limsup E_j = \bigcap_{k \ge 1}^{\infty} \bigcup_{j=k}^{\infty} E_i.$$

1. Show that

 $\liminf E_j = \{x : x \in E_j \text{ for all but finitely many } j\},\\ \limsup E_j = \{x : x \in E_j \text{ for infinitely many } j\}.$

Conclude that $\liminf E_j \subset \limsup E_j$.

- 2. Give an example of a sequence $\{E_j\}$ where $\liminf E_j \neq \limsup E_j$.
- 3. If the limits supremum and infimum are equal, then their common value is called the *limit of the sequence of sets* E_j . Prove that the limit of a sequence of sets E_j exists if and only if the sequence of characteristic functions of the E_j has a limit.
- 4. Show that $\mu(\liminf E_j) \leq \liminf \mu(E_j)$. If $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$, then also $\mu(\limsup E_j) \geq \limsup \mu(E_j)$.

Problem 4 of 5 (The Borel-Cantelli lemma).

Let (X, \mathcal{M}, μ) be a measure space. Suppose $(E_j)_{j\geq 1}$ is a sequence of measurable sets with the property that

$$\sum_{j=1}^{\infty} \mu(E_j) < \infty$$

Show that $\mu(\limsup E_j) = 0$, i.e. for μ -a.e. $x \exists n(x): \forall j > n(x), x \notin E_j$.

Problem 5 of 5.

Let μ^* be an outer measure on X induced from a premeasure μ_0 , and let μ be the restriction of μ^* to the σ -algebra \mathcal{M} of μ^* -measurable sets.

- 1. Prove that $\mu^*(A) = \inf_{E \in \mathcal{M}: E \supset A} \mu(E)$ for all $A \subset X$.
- 2. If $\mu_0(X) < \infty$, define the *inner measure* of a set $A \subset X$ by $\mu_*(A) = \mu_0(X) \mu^*(A^c)$. Prove that A is measurable, if and only if $\mu^*(A) = \mu_*(A)$.