Problem 1 of 5.

Let $(f_n)_{n\geq 1}$ be a sequence of measurable almost everywhere finite real-valued functions on (X, \mathcal{M}, μ) , where μ is a σ -finite measure. Prove that there exist constants $c_n > 0$ such that the series $\sum c_n f_n(x)$ converges for μ -a. e. $x \in X$. **Hint:** Prove it for a finite μ first.

Problem 2 of 5.

- 1. Let f be a continuous function on a closed $K \subset \mathbb{R}$. Show that there exists a continuous function F on \mathbb{R} such that F(x) = f(x) if $x \in K$.
- 2. Prove that every measurable function f on [a, b] is a Lebesgue almost everywhere limit of a sequence (f_n) of continuous functions.
- 3. Is it always possible to choose this sequence to be monotone?

Problem 3 of 5 (The Nikodym distance).

Let (X, \mathcal{M}, μ) be a finite measure space.

- 1. Verify that $d(A, B) := \mu(A \triangle B)$ defines a metric on \mathcal{M}/\sim with a suitable equivalence relation \sim . (Be brief, but precise!)
- 2. Prove that the metric space is complete.

Problem 4 of 5.

Does there exist a dense subset of \mathbb{R}^n , $n \geq 2$ such that no three points in it are collinear?

Problem 5 of 5 (*Criterium for convergence in* $L^1(\mu)$ with a σ -finite μ).

Let μ be a σ -finite measure and $(f_n)_{n\geq 1}$ and f be measurable functions. Show that $f_n \to_{L^1(\mu)} f$ iff all of the following three conditions are satisfied

- 1. f_n converges to f in measure.
- 2. The sequence (f_n) is uniformly integrable, i.e.

$$\forall \epsilon > 0, \ \exists \delta > 0 \text{ such that if } \mu(E) < \delta \text{ then } \int_E |f_n(x)| \, d\mu(x) < \epsilon \text{ for any } n$$

3. The sequence (f_n) is uniformly tight, i.e.

$$\forall \epsilon > 0, \ \exists E, \ \mu(E) < \infty \text{ such that for any } n : \ \int_{E^c} |f_n(x)| \, d\mu(x) < \epsilon.$$

Remark: Note that if μ is finite, the last condition is automatically satisfied.