Real Analysis I Assignment 7, due November 25

Problem 1 of 5.

Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on the vector space X such that $\|\cdot\|_1 \leq \|\cdot\|_2$. Show that if X is complete with respect to both norms, then for some $\alpha > 0$, $\|\cdot\|_1 \geq \alpha \|\cdot\|_2$.

Problem 2 of 5.

Let X be a Banach space, (x_n) be a sequence of elements of X converging, in norm, to $x \in X$, and (f_n) be a sequence of elements of X^* weak*-converging to $f \in X^*$. Show that $\lim_{n\to\infty} f_n(x_n) = f(x)$.

Problem 3 of 5.

Let (x_n) be a sequence of elements of a Hilbert space X which weakly converge to $x \in X$. Assume also that $\limsup ||x_n|| \le ||x||$. Show that $||x_n - x|| \to 0$.

Problem 4 of 5.

Assume that X is an infinite-dimensional Hilbert space. Prove that ...

- 1. Every orthonormal sequence in \mathcal{H} converges weakly to zero;
- 2. The unit sphere $S = \{x \in X : ||x|| = 1\}$ is weakly dense in the closed unit ball $\overline{B} = \{x \in X : ||x|| \le 1\}$, i.e., every $x \in \overline{B}$ is the weak limit of a sequence in S.

Problem 5 of 5.

Let X be a Hilbert space. The **adjoint** of a linear transformation $T: X \to X$ is defined by the property that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for all $x, y \in X$.

Clearly, $(T^*)^* = T$.

1. Show that the ranges and nullspaces of T and T^* are related by

$$\mathcal{R}(T)^{\perp} = \mathcal{N}(T^*), \quad \mathcal{N}(T)^{\perp} = \overline{\mathcal{R}(T^*)}.$$

<u>Remark</u>: In particular, if T is self-adjoint $(T^* = T)$, then $\mathcal{N}(T)$ and $\overline{\mathcal{R}(T)}$ are complementary orthogonal subspaces.

- 2. Let P be the orthogonal projection onto a closed subspace $V \subset X$, i.e., for each point $x \in X$, its image Px is the point of V closest to x. Verify that P is self-adjoint, and that $P^2 = P$.
- 3. Conversely, if P is self-adjoint and $P^2 = P$, show that $V = \mathcal{R}(P)$ is closed and P is the orthogonal projection onto V.