Problem 1 of 5 (The Mean Ergodic Theorem).

Let U be a unitary operator on the Hilbert space $H, M = \{x : Ux = x\}$ and P the orthogonal projection onto M. Let

$$S_n = n^{-1} \sum_{j=0}^{n-1} U^j.$$

Show that for all $x \in H$, $\lim_{n \to \infty} ||S_n x - Px|| = 0$.

Problem 2 of 5.

Prove that $L^p(\mathbb{R}^n)$ is separable for $1 \leq p < \infty$ but not for $p = \infty$.

Problem 3 of 5.

Suppose that $f \in L^p \cap L^\infty$ for some $1 . Show that <math>f \in L^q$ for all $q \ge p$ and

$$\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}.$$

Problem 4 of 5.

Suppose $0 < p_0 < p_1 \leq \infty$. Find examples of functions on \mathbb{R}^+ (with Lebesgue measure) such that $f \in L^p$ if and only if ...

- 1. p_0 $2. <math>p_0 \le p \le p_1;$
- 3. $p = p_0$.

Hint: Try functions of the form $f(x) = x^{-\alpha} |\log x|^{\beta}$

Problem 5 of 5.

Let (X, d) be a metric space with $H_{\alpha}(X) > 0$. Show that H_{β} is not σ -finite on X for any $0 < \beta < \alpha$.