Assignment 5, due February 11

Problem 1

Let $x = p_1 p_2 \dots p_k$, where p_1, p_2, \dots, p_k are different prime numbers. Let also $(p_j - 1)|(x - 1)$ for $j = 1, 2, \dots, k$. Show that x is a Carmichael number.

Problem 2

Suppose that $k \in \mathbb{N}$ and the numbers 6k + 1, 12k + 1, and 18k + 1 are all prime. Show that (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.

Problem 3

Find a recurrent formula for the solution of the congruency

 $6x \equiv 1 \pmod{11^e},$

where $e \in \mathbb{N}$.

Problem 4

Find a recurrent formula for the solution of the congruency

 $x^3 \equiv 1 \pmod{5^e},$

where $e \in \mathbb{N}$.

Problem 5

Show that $p \geq 3$ is a prime if and only if

$$2(p-3)! \equiv -1 \pmod{p}.$$