Assignment 4, due October 18

Problem 1 of 5. Let A be a set. Let

$$\operatorname{dist}(x,A) := \inf_{a \in A} |x - a|.$$

Let $U_n: \left\{ x : \operatorname{dist}(x, A) < \frac{1}{n} \right\}.$

- (1) Show that the set U_n is open. Hint: It can be represented as a union of open sets.
- (2) Show that $\overline{A} = \bigcap_{n=1}^{\infty} U_n$.

Problem 2 of 5. Let A and B be subsets of \mathbb{R} .

- (1) Prove that $Int(A \cap B) = Int A \cap Int B$.
- (2) Prove that $\operatorname{Int}(A \bigcup B) \subset \operatorname{Int} A \bigcup \operatorname{Int} B$. **Corrected on October 17:** The inclusion should be $\operatorname{Int}(A \bigcup B) \supset \operatorname{Int} A \bigcup \operatorname{Int} B$. As explained in the announcement, this part of the problem is now optional.
- (3) Give an example of two sets A and B with $Int(A \bigcup B) \neq Int A \bigcup Int B$.

Problem 3 of 5.

- (1) Prove that if A is a bounded above set then $\sup A \in \operatorname{Bd} A$.
- (2) Prove that if A is a bounded below set then $\inf A \in \operatorname{Bd} A$.
- (3) Prove that if a < b < c and the two sets A and B has the property that $A \cap (a, c) = B \cap (a, c)$. Show that $b \in \operatorname{Bd} A$ if and only if $b \in \operatorname{Bd} B$.
- (4) Prove that if $A \subset \mathbb{R}$ and $\operatorname{Bd} A = \emptyset$ then $A = \mathbb{R}$ or $A = \emptyset$. Hint: Consider $a \in A$, $c \in A^c$, and try to use the previous result to create a bounded set with no boundary points.
- (5) Derive that the only subsets of \mathbb{R} which are both open and closed are \mathbb{R} itself and \emptyset .

Problem 4 of 5. Give counterexamples to the following false statements

- (1) The isolated points of a set form a closed set.
- (2) Every open set contains a t least two points.
- (3) The supremum of a bounded above set is the greatest of its limit points.
- (4) If A is any subset of \mathbb{R} , then $\operatorname{Bd} \overline{A} = \operatorname{Bd} A$.
- (5) If A is any subset of \mathbb{R} , then Bd Bd A = Bd A.

Problem 5 of 5. For $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, let

$$A + B := \{a + b : a \in A, b \in B\}.$$

Let A be a closed set, B be a compact set. Show that A + B is closed.

Hint: Consider a limit point of c of A + B. Then $c = \lim_{n \to \infty} (a_n + b_n)$. Use a converging subsequence of (a_n) .