Introduction to Real Analysis

Assignment 8, due November 15

Problem 1 of 5. Assume f is continuous on [-1, 1] and differentiable on $(-1, 0) \bigcup (0, 1)$. If $\lim_{x\to 0} f'(x) = L$, show that f'(0) exists and equals L.

Problem 2 of 5.

- (1) Let (f_n) be a sequence of continuous functions that converges uniformly to a function f on a compact set A. If $f(x) \neq 0$ on A, show that $(1/f_n)$ converges uniformly on A to 1/f.
- (2) Give an example of a sequence (f_n) of continuous functions that converges uniformly to a function f on a (0, 1], $f(x) \neq 0$ on (0, 1], but $(1/f_n)$ does not converge uniformly on (0, 1] to 1/f.
- (3) Give an example of a sequence (f_n) of continuous functions that converges uniformly to a function f on a $[1, \infty)$, $f(x) \neq 0$ on $[1, \infty)$, but $(1/f_n)$ does not converge uniformly on $[1, \infty)$ to 1/f.

Problem 3 of 5. Assume the sequence of functions $f_n(x)$ converges to a function f(x) pointwise on a compact set A and assume that for each $x \in A$ the sequence $f_n(x)$ is increasing. Assume that f_n and f are continuous on A.

- (1) Set $g_n := f f_n$ and translate the preceding hypothesis into statements about the sequence (g_n) .
- (2) Let $\varepsilon > 0$ be arbitrary, and define

$$K_n := \{ x \in A : g_n(x) \ge \varepsilon \}.$$

show that $K_{n+1} \subset K_n$.

- (3) Show that each K_n is compact.
- (4) Use the pointwise convergence of the sequence (g_n) to show that $\bigcap_{n=1}^{\infty} K_n = \emptyset$.
- (5) Conclude that for some $N, K_N = \emptyset$.
- (6) Derive that for $n \ge N$ and for all $x \in A$

$$|f_n(x) - f(x)| < \varepsilon.$$

This proves that (f_n) converges to f uniformly.

Problem 4 of 5. Let f be a continuous function on \mathbb{R} and let (a_n) be a real sequence converging to zero. Let the sequence of functions $(f_n(x))$ be defined by $f_n(x) := f(x + a_n)$.

- (1) Show that the sequence of functions $(f_n(x))$ converges to f uniformly on every bounded $A \subset \mathbb{R}$.
- (2) Show that if the function f is uniformly continuous on \mathbb{R} , then $(f_n(x))$ converges to f uniformly on \mathbb{R} .
- (3) Show that a function f is not uniformly continuous on \mathbb{R} if and only if for some sequence (a_n) , $f_n(x)$ does not converge to f(x) uniformly. **Hint:** You can use Theorem 4.4.5.

Problem 5 of 5. Let (f_n) be a sequence of bounded (not necessarily continuous functions) on a [0, 1].

- (1) Construct such a sequence (f_n) converging pointwise to an unbounded function f on [0, 1].
- (2) Assume that (f_n) converges uniformly to a function f. Show that f is also bounded.