What we need to know

1) Sets.

 $\emptyset, x \in A$, when two sets are equal, subsets. Standard sets: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} *Quantors*: \forall , \exists , \exists ! Basic set operations: $A \cup B = \{x : x \in A \text{ or } x \in B\}$ $A \cap B = \{x : x \in A \text{ and } x \in B\}$ $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$ Examples: {x: $\forall \varepsilon > 0 | x - a | < \varepsilon$ } = {a} ${x: \exists b < a: x < b} = {x: x < a}$ ${x: \forall b > a: x < b} = {x: x \le a}$ 2) Cartesian products.

 $A \times B = \{(a, b) : a \in A, b \in B\}$ - set of pairs. **Note:** $(a_1, b_1) = (a_2, b_2)$ iff $a_1 = a_2$ and $b_1 = b_2$. Notation: $A^n \coloneqq A \times A \times \cdots \times A$, *n* times Examples: \mathbb{R}^n , \mathbb{Z}^n

3) Relations

 $R \subset A \times B$ is called a *relation* between elements of A and B Examples (easy): empty and full relations

4) Functions

Functions are rigorously defined by their graphs. A relation $R \subset A \times B$ is called a *function* from A to B if $\forall a \in A \exists ! b \in B : (a, b) \in R.$ Notation: $R: A \rightarrow B$ Example + notation: a function $R: \mathbb{N} \to A$ is called a *sequence*, $a_n \coloneqq R(n)$ Can compose functions: $f: A \to B, g: B \to C$, then $g \circ f: A \to C$ is defined by $(a, c) \in g \circ f$ iff $\exists b \in B: (a, b) \in f$ and $(b, c) \in g$.

Special types of functions:

Surjection: each point has a pre image $\forall b \in B \exists a \in A : (a, b) \in R$.

Injection: images of different points are different

 $(a_1, b) \in R$ and $(a_2, b) \in R \Rightarrow a_1 = a_2$

Bijection or **one-to-one map:** both injection and surjection. Has inverse.

5) Equivalence relations

A relation $R \subset A \times A$ is called an equivalence relation if it is reflexive $((a, a) \in R)$, symmetric $((a, b) \in R)$ $R \Rightarrow (b, a) \in R$, and transitive $((a, b) \in R, (b, c) \in R \Rightarrow (a, c) \in R)$.

The same as partition of the set A into disjoint subsets. Indeed, each partition defines an equivalence relation: two elements are equivalent iff they belong to the same partition. And vice versa, different equivalency classes are disjoint.

Notation: $a \sim b$. The set of equivalency classes: A/\sim .

6) Example of equivalence: Z_p.

Let $p \in \mathbb{N}$, p > 1. $m, n \in \mathbb{Z}$. $m \equiv n \pmod{p}$ iff m - n is divisible by p.

It is an equivalence relation -- check.

Moreover, addition is well-defined on Z_p an equivalency class of the sum depends only on the equivalency class of summands. So Z_p becomes a *commutative group* with respect to addition. Multiplication is well-defined also, but it is not always a group -- not every element has an inverse. It is a commutative group with respect to multiplication iff p is a prime number. Moreover, in this case it is a field.

7) Rational numbers.

More interesting example: rational numbers. Start with $\mathbb{Z} \times \mathbb{N}$.

Define an equivalence relation $(p_1, g_1) \sim (p_2, g_2)$ iff $p_1g_2 = p_2g_1$.

Q becomes a field. Need to check, that addition and multiplication are well

defined, and satisfy the axioms of the field.

Review: some extra material

8) What do we need to know from Calculus

Most of the results will be reproved. But I will assume that you know how to work with exponential, logarithmic, trigonometric, and inverse trigonometric functions, take their derivatives.

9) What do we need to know from Linear Algebra.

There will be some review when you need it, but you need to know the definitions of

- Linear, or vector, space.
- Linear independence, basis, dimension of vector space.
- Linear transformations, their matrix representation.
- Matrix operations: addition, multiplication.
- Determinant.
- Solving linear systems by elimination.