MAT406H5F. Assignment 4, due October 14

Problem 1 of 5

Solve the following zero-sum game, i.e. find the value of the game and all optimal strategies for both players

$\int 0$	$1 \rangle$	
2	-1	
-2	2	•
$\setminus 1$	0 /	

Problem 2 of 5

Solve the following zero-sum game, i.e. find the value of the game and all optimal strategies for both players

$$\begin{pmatrix} 1 & 2 & -1 & 1 \\ -2 & -3 & -2 & 2 \\ -1 & 1 & 1 & 4 \end{pmatrix}.$$

Problem 3 of 5

Find an optimal strategy for Ruth and the value of the game with the matrix

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix}.$$

Problem 4 of 5

Solve the following zero-sum game, i.e. find the value of the game and all optimal strategies for both players

$$\begin{pmatrix} 1 & -2 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Problem 5 of 5

Let $\mathbf{z} \in \mathbb{R}^n$, $\mathbf{z} \neq \mathbf{0}$, and $c \in \mathbb{R}$. Denote by $H(\mathbf{z}, c)$ the closed subspace $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{z}^T \mathbf{x} \leq c\}$. Let $K \subset \mathbb{R}^n$ be a closed convex set. Denote

$$\tilde{K} = \bigcap_{(K \subset H(\mathbf{z},c))} H(\mathbf{z},c),$$

- i.e. \tilde{K} is the intersection of all closed subspaces containing K.
 - 1. Prove that if $\mathbf{x} \in K$, then $\mathbf{x} \in \tilde{K}$ and thus $K \subset \tilde{K}$.
 - 2. Using the Separation Theorem, prove that if $\mathbf{x} \notin K$ then $\mathbf{x} \notin \tilde{K}$, and thus $\tilde{K} \subset K$. Conclude that $K = \tilde{K}$.