MAT406H5F. Assignment 7, due November 18

Problem 1 of 5

Consider the following NTU cooperative game with payoff matrix:

$$\begin{pmatrix} (3,2) & (3,0) & (2,2) \\ (1,0) & (3,3) & (0,3) \\ (0,2) & (0,0) & (3,2) \end{pmatrix}$$

Describe its feasible payoff set and all Pareto optimal payoff vectors.

Problem 2 of 5

Find the point of the optimal agreement for the two-person cooperative TU game given by the following bi-matrix.

(3,1)	(2, 2)	(6, 5)	(10, 9)	(8,8)
(4, 4)	(5, 4)		(3, 1)	
(2,3)	(-1, -1)	(2, 2)	(3, 4)	(6, 4)
(2,3) (-1,0)	(8,7)			

Problem 3 of 5

Consider a two-person cooperative game given by the following matrix

(2,0)	(3, -3)	(2, -1)	(10, 5)	(0,0)	
$ \begin{pmatrix} (2,0)\\(7,5) \end{pmatrix} $	(3,1)	(3,2)	(2, 1)	(-1,2)	
(2,3) $(-1,0)$	(0,0)	(1, 1)	(4, 5)	(-1,4)	·
(-1,0)	(8,7)	(5, 6)	(3, 2)	(-1,5)	

Solve the game as a TU game.

Problem 4 of 5

Find the Nash solution of the game from a previous problem played as an NTU game with disagreement point (0,0).

Problem 5 of 5

Sometimes it appears a player would prefer to play a game without cooperating with the other player. The payoff matrix for a two-person non-zero-sum game is:

$$\begin{pmatrix} (3,8) & (4,4) \\ (2,0) & (0,6) \end{pmatrix}.$$

Find all its equilibrium pairs when considered as a non-cooperative game. Than find the solution of the game considered as a TU cooperative game. Which game would II prefer to play?