Mathematical Introduction to Game Theory

Assignment 4, due October 17

Problem 1 of 5. Solve the following zero-sum game, i.e. find the value of the game and all optimal strategies for both players

$$\begin{pmatrix} 0 & 1 \\ 2 & -1 \\ -1 & 2 \\ 1 & 0.5 \end{pmatrix}.$$

Problem 2 of 5. Let $\mathbf{z} \in \mathbb{R}^n$, $\mathbf{z} \neq \mathbf{0}$, and $c \in \mathbb{R}$. Denote by $H(\mathbf{z}, c)$ the closed subspace $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{z}^T \mathbf{x} \leq c\}$.

Let $K \subset \mathbb{R}^n$ be a closed convex set.

Denote

$$\tilde{K} = \bigcap_{(K \subset H(\mathbf{z},c))} H(\mathbf{z},c),$$

i.e. \tilde{K} is the intersection of all closed subspaces containing K.

- (1) Prove that if $\mathbf{x} \in K$, then $\mathbf{x} \in \tilde{K}$ and thus $K \subset \tilde{K}$.
- (2) Using the Separation Theorem, prove that if $\mathbf{x} \notin K$ then $\mathbf{x} \notin \tilde{K}$, and thus $\tilde{K} \subset K$. Conclude that $K = \tilde{K}$.

Problem 3 of 5. Prove that if Ruth has two different optimal strategies in a zero-sum game, then she has infinitely many optimal strategies in this game.

Hint: Prove that the set of all optimal strategies of Ruth in any finite zero-sum game is convex.

Problem 4 of 5. Solve the following zero-sum game, i.e. find the value of the game and all optimal strategies for both players

$$\begin{pmatrix} 1 & 2 & -1 & 1 \\ -2 & -3 & -2 & 2 \\ -1 & 1 & 1 & 1 \end{pmatrix}.$$

Problem 5 of 5. Find an optimal strategy for Chris and the value of the game with the matrix

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix}.$$