- **Reminder:** Problem Set 3 is available on the course website, and is due **today, by 11:59pm**.
 - Don't leave the submission process until the last minute.
- Today's lecture will assume you have watched up to and including video 4.5.

For tomorrow's lecture, watch videos 4.6 and 4.8.

• This lecture ended a little abruptly in the middle of an exercise. That's my fault, and I apologise. Please finish that proof (on the last slide) at home, and we'll talk about it in class tomorrow.

Problem 1. Let f be a function with domain D. Write the definition of

f is injective on D.

Problem 2. What is the relationship between injectivity and the existence of inverses?

Absolute values and inverses

Let h be the function defined by

$$h(x) = x|x| + 1.$$

- **1** Sketch the graph of *h*.
- 2 What are the domain, codomain, and range of h?
- 3 Does *h* have an inverse?
- **4** Compute $h^{-1}(-8)$.
- **5** Find an equation for $h^{-1}(x)$.
- 6 Use your equation to verify that:
 - for all $x \in \mathbb{R}$, $h(h^{-1}(x)) = x$

• for all
$$x \in \mathbb{R}$$
, $h^{-1}(h(x)) = x$

Assume that all functions in this problem have domain \mathbb{R} .

Prove the following theorem:

Theorem

Let f and g be functions.

IF f and g are injective, THEN f \circ g is injective.

How to proceed:

- 1 Write the definition of what you want to prove.
- 2 Figure out the structure of the proof.
- 3 Complete the proof, making sure you have used both hypotheses.

Composition of injective functions (part 2)

Assume that all functions in this problem have domain \mathbb{R} .

Prove the following theorem:

Theorem Let f and g be functions. IF f o g is injective, THEN g is injective.

Hint:

- **1** The theorem is of the form " $A \implies B$ ". In this case, it is easier to prove the equivalent theorem of the form "(not B) \implies (not A)".
- 2 Having written this new statement, write down the definitions of the hypotheses and the conclusion.
- **3** Figure out the structure of the proof.
- 4 Complete the proof.