- Reminder: Problem Set 6 is due on Monday, 20 January.
- Problem Set 7 is due on Thursday, 30 January.
- Today's lecture will assume you have watched up to and including video 7.12.
 - For tomorrow's lecture, please watch videos 8.1 and 8.2

The " ε -characterization" of integrability

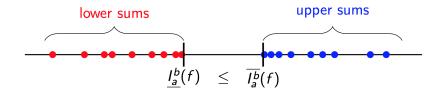
Theorem

Let f be a bounded function on [a, b]. Then:

```
f is integrable on [a, b]
```

IF AND ONLY IF

orall arepsilon > 0, \exists a partition P of [a,b] such that $U_P(f) - L_P(f) < arepsilon$



" ε -characterization" \implies integrable

Prove this claim.

Claim

Let f be a bounded function on [a, b].

IF $\forall \varepsilon > 0$, \exists a partition P of [a, b] such that $U_P(f) - L_P(f) < \varepsilon$. THEN f is integrable on [a, b]

- **1** Recall the definition of "f is integrable on [a, b]".
- 2 For any partition P, order the quantities $U_P(f)$, $L_P(f)$, $\overline{I_a^b}(f)$, $I_a^b(f)$.
- **3** For any partition *P*, order the quantities $U_P(f) L_P(f)$, $\overline{I_a^b}(f) I_a^b(f)$, and 0.

integrable \implies " ε -characterization"

Prove this claim.

Claim

Let f be a bounded function on [a, b].

IF f is integrable on [a, b]THEN $\forall \varepsilon > 0$, \exists a partition P of [a, b] such that $U_P(f) - L_P(f) < \varepsilon$.

- **1** Show that $\forall \varepsilon > 0$, there is a partition P s.t. $U_P(f) < \overline{I_a^b}(f) + \frac{\varepsilon}{2}$.
- 2 Show that $\forall \varepsilon > 0$, there is a partition P s.t. $L_P(f) > I_a^b(f) \frac{\varepsilon}{2}$.
- **3** Recall the definition of "f is integrable on [a, b]".
- **4** Assume f is integrable on [a, b]. Fix $\varepsilon > 0$. Show there are partitions P_1 and P_2 s.t. $U_{P_1}(f) - L_{P_2}(f) < \varepsilon$.
- Using P₁ and P₂ from the previous step, construct a partition P such that U_P(f) − L_P(f) < ε.

Norms of partitions

Consider the interval [0,7]. What are the norms of the following partitions?

•
$$P = \{0, 1, 2, 3, 4, 5, 6, 7\}.$$

• $P = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, 3, 4, 5, 6, 7\}.$
• $P = \{0, 1, 2, 3, 7\}$
• $P = \{0, 2, 4, 6, 7\}$
• $P = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, 5, \frac{11}{2}, 6, \frac{13}{2}, 7\}$

Describe a simple sequence of partitions $P_1, P_2, P_3, ...$ such that $||P_n|| \rightarrow 0$ as $n \rightarrow \infty$.