- Problem Set 8 is available on the course website now. It's due on the Thursday after reading week.
- Today's lecture will assume you have watched up to and including video 11.4.

For Thursday's lecture, please watch videos 11.5 and 11.6.

Definition of limit of a sequence

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let $L \in \mathbb{R}$. Which statements below are equivalent to " $\{a_n\}_{n=0}^{\infty} \longrightarrow L$ "? 2 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \quad n > n_0 \implies |L - a_n| < \varepsilon.$ **3** $\forall \varepsilon > 0, \exists n_0 \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, \quad n \ge n_0 \implies |L - a_n| < \varepsilon.$ **5** $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \quad n \ge n_0 \implies |L - a_n| \le \varepsilon.$ **6** $\forall \varepsilon \in (0,1), \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, n \ge n_0 \implies |L-a_n| < \varepsilon.$ $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \quad n \ge n_0 \implies |L - a_n| < \frac{1}{2}.$ **8** $\forall \mathbf{k} \in \mathbb{N} > \mathbf{0}, \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| < \mathbf{k}.$ **9** $\forall k \in \mathbb{N} > 0$, $\exists n_0 \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$, $n \ge n_0 \implies |L - a_n| < \frac{1}{L}$. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let $L \in \mathbb{R}$.

Which statements below are equivalent to " $\{a_n\}_{n=0}^{\infty} \longrightarrow L$ "?

- **1** $\forall \varepsilon > 0$, the interval $(L \varepsilon, L + \varepsilon)$ contains all but finitely many of the terms of the sequence.
- (1) $\forall \varepsilon > 0$, the interval $[L \varepsilon, L + \varepsilon]$ contains all but finitely many of the terms of the sequence.
- Every interval that contains L must contain all but finitely many of the terms of the sequence.
- Every open interval that contains L must contain all but finitely many of the terms of the sequence.

- Let f be a function defined at least on $[1, \infty)$. We define a sequence by $a_n = f(n)$.
 - IF f is increasing, THEN $\{a_n\}_{n=0}^{\infty}$ is increasing.
 - **2** IF $\{a_n\}_{n=0}^{\infty}$ is increasing, THEN *f* is increasing.
- (If you think one of them is true, try to prove it. If you think one of them is false, give a counterexample.)

Monotonicty vs. boundedness vs. convergence

For each of the eight "???" boxes, construct an example sequence if possible.

If any of them is impossible, cite a theorem to justify why.

		convergent	divergent
monotonic	bounded	???	???
	unbounded	???	???
not monotonic	bounded	???	???
	unbounded	???	???