- **Reminder:** Problem Set 9 is due next Thursday, 12 March.
- Today's lecture will assume you have watched up to and including video 13.9.

For next Tuesday's lecture, watch videos 13.10 through 13.12.

Quick warp-up: Convergent or divergent?

1 $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ **2** $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$ **3** $\sum_{n=1}^{\infty} \frac{1}{2^{n/2}}$ **4** $\sum_{n=5}^{\infty} \frac{3^{n}}{2^{2n+1}}$ **5** $\sum_{n=3}^{\infty} \frac{3^{n}}{1000 \cdot 2^{n+2}}$ **6** $\sum_{n=0}^{\infty} (-1)^{n}$

True or False – Series

Let $\sum a_n$ be a series, and let $\{S_n\}_{n=0}^{\infty}$ be its sequence of partial sums. **1** IF the series $\sum_{n=1}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $a_n > 100$. **2** IF the series $\sum a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $S_n > 100$. **3** IF the series $\sum_{n=1}^{\infty} a_n$ converges, THEN the series $\sum_{n=1}^{\infty} a_n$ converges to a smaller number. n = 100**4** IF the series $\sum_{n=1}^{\infty} a_n$ converges, THEN the sequence $\{S_n\}_{n=0}^{\infty}$ is eventually monotonic.

~

Let $\sum_{n=0}^{\infty} a_n$ be a series, and let $\{S_n\}_{n=0}^{\infty}$ be its sequence of partial sums.

6 IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.

6 IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n \ge 0, a_n > 0$.

~

7 IF
$$\lim_{n\to\infty} a_n = 0$$
, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.

8 IF the series
$$\sum_{n=0}^{\infty} a_n$$
 is convergent, THEN $\lim_{n\to\infty} a_n = 0$.

Let
$$\{a_n\}_{n=0}^{\infty}$$
 be a sequence.
1 IF $\lim_{n\to\infty} a_n = 0$, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.
2 IF $\lim_{n\to\infty} a_n \neq 0$, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.
3 IF $\sum_{n=1}^{\infty} a_n$ is convergent, THEN $\lim_{n\to\infty} a_n = 0$.
4 IF $\sum_{n=1}^{\infty} a_n$ is divergent, THEN $\lim_{n\to\infty} a_n \neq 0$.

From the geometric series formula, we know that when |x| < 1, we can expand the function $f(x) = \frac{1}{1-x}$ as a series:

$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $|x| < 1$

Find similar ways to write the following functions as series:

•
$$g(x) = \frac{1}{1+x}$$
 • $h(x) = \frac{1}{1-x^2}$ • $k(x) = \frac{1}{2-x}$

TRUE OR FALSE!?

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence. IF $\lim_{n \to \infty} a_n = 0$, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.