- **Reminder:** Problem Set 9 is due on Thursday.
- Today's lecture will assume you have watched up to and including video 13.12.

For Thursday's lecture, watch videos 13.13 and 13.14.

• You have some series to think about for next class. See the last slide.

Frue or False?
1 IF
$$\lim_{n\to\infty} a_n = 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.
2 IF $\lim_{n\to\infty} a_n \neq 0$, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.
3 IF $\sum_{n=1}^{\infty} a_n$ is convergent, THEN $\lim_{n\to\infty} a_n = 0$.
4 IF $\sum_{n=1}^{\infty} a_n$ is divergent, THEN $\lim_{n\to\infty} a_n \neq 0$.

For today's class, you watched videos about:

- the integral test for series,
- the basic comparison test for series,
- the limit comparison test for series.

On PS9, you will explore, in detail, the connection between improper integrals like $\int_1^{\infty} f(x) dx$ and series like $\sum_{n=1}^{\infty} f(n)$.

So today, we're going to concentrate on building your intuition for using the convergence tests.

For which values of $p \in \mathbb{R}$ do these series converge?

 $\sum_{n=0}^{\infty} \frac{1}{p^n}$ $\sum_{n=0}^{\infty} \frac{1}{n^p}$

$$\sum_{n=0}^{\infty} p^{n}$$

$$\sum_{n=0}^{\infty} n^{p}$$

More quick warm-ups – Convergent or divergent?

TRUE OR FALSE !?

Let
$$\{a_n\}_{n=0}^{\infty}$$
 be a sequence.

$$\mathsf{IF}\,\lim_{n\to\infty}a_n=0,$$

THEN
$$\sum_{n=1}^{\infty} a_n$$
 is convergent.

Think about the rest of these for next class.

$$\sum_{n=1}^{\infty} \frac{2^{n} - 40}{3^{n} - 20}$$

$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{3}}$$

$$\sum_{n=1}^{\infty} \frac{(\ln n)^{20}}{n^{2}}$$

$$\sum_{n=1}^{\infty} \frac{1}{n \ln n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n \ln n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n \ln n}$$