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This is a large, constantly growing list of problems in basic point set topology. This list will

include many of the exercises given in the lecture notes. These problems are drawn from or

inspired by many sources, including but not limited to:

• Topology, Second Edition, by James Munkres.

• Counterexamples in Topology, by Steen and Seebach.

• Foundations of Topology, by C. Wayne Patty.

• Problems and Theorems in Classical Set Theory, by Komjath and Totik

• Course notes and assignments by Micheal Pawliuk.

• Course notes and assignments by Peter Crooks.

They are divided into sections by topic, and rated with my opinion of their difficulty, from

one to three stars, or with a † for the especially challenging ones.
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1 Topologies

?1. Fix a < b ∈ R. Show explicitly that the interval (a, b) is open in Rusual. Show explicitly

that the interval [a, b) is not open in Rusual.

?2. Let X be a set and let B = { {x} : x ∈ X }. Show that the only topology on X that

contains B as a subset is the discrete topology.

?3. Fix a set X, and let Tco-finite and Tco-countable be the co-finite and co-countable topologies

on X, respectively.

(a) Show explicitly that Tco-finite and Tco-countable are both topologies on X.

(b) Show that Tco-finite ⊆ Tco-countable.

(c) Under what circumstances does Tco-finite = Tco-countable?

(d) Under what circumstances does Tco-countable = Tdiscrete?

?4. Let (X, Tco-countable) be an infinite set with the co-countable topology. Show that Tco-countable

is closed under countable intersections. Give an example to show that it need not be closed

under arbitrary intersections.

?5. Let X be a nonempty set, and fix an element p ∈ X. Recall that

Tp := {U ⊆ X : p ∈ U } ∪ {∅}.

is called the particular point topology at p on X. Show explicitly that Tp is a topology on

X.

?6. Recall that the ray topology on R is:

Tray := { (a,∞) : a ∈ R } ∪ {∅,R}.

Show explicitly that Tray is a topology on R. Be sure to think carefully about unions.

?7. Let (X, T ) be a topological space, and let A ⊆ X be a set with the property that for every

x ∈ A, there is an open set Ux ∈ T such that x ∈ Ux ⊆ A. Show that A is open.

?8. Let (X, T ) be a topological space, and let f : X → Y be an injective (but not neces-

sarily surjective) function. Is Tf := { f(U) : U ∈ T } necessarily a topology on Y ? Is it

necessarily a topology on the range of f?

?9. Let X be a set and let T1 and T2 be two topologies on X. Is T1 ∪ T2 a topology on X?

What about T1 ∩ T2? If yes, prove it. If not, give a counterexample.

?10. Let X be an infinite set. Show that there are infinitely many distinct topologies on X.
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??11. Fix a set X, and let φ be a property that subsets A of X can have. For example, φ could be

“A is countable”, or “A is finite”. φ could be “A contains p” or “A doesn’t contain p” for

a fixed point p ∈ X. If X = R, φ could be “A is an interval” or “A contains uncountably

many irrational numbers less than π”. Define

Tco-φ = {U ⊆ X : U = ∅, or X \ U has φ } .

Under what assumptions on φ is Tco-φ a topology on X? Which topologies we have seen

so far can be described in this way, using which φ’s?

??12. Let { Tα : α ∈ I } be a collection of topologies on a set X, where I is some indexing set.

Prove that there is a unique finest topology that is refined by all the Tα’s.

That is, prove that there is a topology T on X such that

(a) Tα refines T for every α ∈ I.

(b) If T ′ is another topology that is refined by Tα for every α ∈ I, then T is finer than

T ′.

??13. This extends Exercise 8. Show with examples that the assumption that f is injective

is necessary. That is, give an example of a topological space (X, T ) and a non-injective

function f : X → Y such that Tf is a topology, and also give an example where Tf is not

a topology.

(Hint: You can do both in Rusual.)

??14. Working in Rusual:

(a) Show that every nonempty open set contains a rational number.

(b) Show that there is no uncountable collection of pairwise disjoint open subsets of R.
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2 Bases for topologies

?1. Show explicitly that the collection B = { (a, b) ⊆ R : a < b } is basis, and that it generates

the usual topology on R.

?2. Show that the collection BQ := { (a, b) ⊆ R : a, b ∈ Q, a < b } is a basis for the usual

topology on R.

?3. Some exercises about the Sorgenfrey line.

Recall that the collection B = { [a, b) ⊆ R : a < b } is a basis which generates S, the Lower

Limit Topology. The space (R,S) is called the Sorgenfrey line. We will reference several

of these exercises later when we explore properties of this space.

(a) Show that every nonempty open set in S contains a rational number.

(b) Show that the interval (0, 1) is open in the Sorgenfrey line.

(c) More generally, show that for any a < b ∈ R, (a, b) is open in the Sorgenfrey line.

(d) Is the interval (0, 1] open S?

(e) Show that the S strictly refines the usual topology on R.

(f) Show that the real numbers can be written as the union of two disjoint, nonempty

open sets in S.

(g) Let BQ := { [a, b) ⊆ R : a, b ∈ Q, a < b }. Show that BQ is not a basis for the Lower

Limit Topology.

?4. Recall that the collection B = { {x} : x ∈ X } is a basis for the discrete topology on a set

X. If X is a finite set with n elements, then clearly B also has n elements. Is there a basis

with fewer than n elements that generates the discrete topology on X?

?5. Let X = [0, 1][0,1], the set of all functions f : [0, 1]→ [0, 1]. Given a subset A ⊆ [0, 1], let

UA = { f ∈ X : f(x) = 0 for all x ∈ A } .

Show that B := {UA : A ⊆ [0, 1] } is a basis for a topology on X.

??6. Let B be a basis on a set X, and let TB be the topology it generates. Show that

TB =
⋂
{ T ⊆ P(X) : T is a topology on X and B ⊆ T } .

That is, show that TB is the intersection of all topologies that contain B.

??7. Let { Tα : α ∈ I } be a collection of topologies on a set X, where I is some indexing set.

Prove that there is a unique coarsest topology that refines all the Tα’s.

That is, prove that there is a topology T on X such that
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(a) T refines Tα for every α ∈ I.

(b) If T ′ is another topology that refines Tα for every α ∈ I, then T is coarser than T ′.

??8. Let m, b ∈ Z with m 6= 0. Recall that a set of the form Z(m, b) = {mx+ b : x ∈ Z } is

called an arithmetic progression. Show that the collection B of all arithmetic progressions

is a basis on Z.

The topology TFurst that B generates is called the Furstenberg topology. This is an in-

teresting topology we will use later to give a very novel proof of the infinitude of the

primes.

(a) Describe the open sets of this topology (qualitatively).

(b) Show that every nonempty open set in TFurst is infinite.

(c) Let U ∈ B be a basic open set. Show that Z \ U is open.

(d) Show that for any pair of distinct integers m and n, there are disjoint open sets U

and V such that m ∈ U and n ∈ V .

For the next three problems, we’re going to define a new idea. In lectures we said that a

basis can be a convenient way of specifying a topology so we don’t have to list out all the open

sets. Now we’ll extend this idea by defining a convenient way of specifying a basis. This isn’t

always more convenient than just listing the elements of the basis, but often is.

Definition 2.1. Let X be a set. A collection S ⊆ P(X) is called a subbasis on X if the collection

of all finite intersections of elements of S is a basis on X. That is, if

B := {S1 ∩ · · · ∩ Sn : n ∈ N, S1, . . . , Sn ∈ S }

is a basis on X. This basis is called the basis generated by S.

The topology generated by the basis generated by S is called the topology generated by S, as

you might expect.

??9. Show that the collection

S := { (−∞, b) : b ∈ R } ∪ { (a,∞) : a ∈ R }

is a subbasis that generates the usual topology on R.

??10. Let S be a collection of subsets of a set X that covers X. That is, X =
⋃
S. Show that S

is a subbasis on X. Give an example of a subbasis on R that does not generate the usual

topology on R.

??11. For a prime number p, let Sp = {n ∈ N : n is a multiple of p }.

(a) Show that S := {Sp : p is prime } ∪ {{1}} is a subbasis on N.
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(b) Describe the open sets in the topology generated by S (qualitatively).

???12. Fix an infinite subset A of Z whose complement Z\A is also infinite. Construct a topology

on Z in which:

(a) A is open.

(b) Singletons are never open (ie. for all n ∈ Z, {n} is not open).

(c) For any pair of distinct integers m and n, there are disjoint open sets U and V such

that m ∈ U and n ∈ V .
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3 Closed sets, closures, and dense sets

?1. Let (X, T ) be a topological space and B a basis for T . Let A ⊆ X. Show that x ∈ A if

for every basic open set U containing x, U ∩A 6= ∅.

?2. Let (X, T ) be a topological space, and A,B ⊆ X. Show that A ∪B = A ∪ B. Is it true

that A ∩B = A ∩B? Prove it or give a counterexample.

?3. Let A =
{

1
n : n ∈ N

}
. In Rusual, prove that A = A ∪ {0}.

?4. Prove all the claims that are left unproved in Example 2.3 of the lecture notes on Closures.

?5. Prove Proposition 3.4 from the lecture notes on Closures. That is, if (X, T ) is a topological

space at A ⊆ X, show that

A =
⋂
{C ⊆ X : C is closed, and A ⊆ C } .

?6. Prove Proposition 4.2 from the lecture notes on Closures. That is, if (X, T ) be a topological

space and D ⊆ X, show that D is dense if and only if for every nonempty open set U ⊆ X,

D ∩ U 6= ∅.

?7. In an arbitrary topological space, is the union of two dense sets necessarily dense? What

about the intersection of two dense sets? For both questions, prove it or give a counterex-

ample.

For some of the exercises in this section, we are going to need a new definition. This definition

is dual to the definition of closure in some sense, though it will not be quite as useful for us.

Definition 3.1. Let (X, T ) be a topological space, and let A ⊆ X. We define the interior of A

in (X, T ), denoted int(A), by:

x ∈ int(A) if and only if there is an open set U containing x such that U ⊆ A.

?8. Show for any topological space (X, T ) and any A ⊆ X, that int(A) is open.

?9. Going further than the previous exercise, show that

int(A) =
⋃
{U ⊆ X : U is open, and U ⊆ A } .

Many texts will take the equation above as the definition of the interior of a set.

?10. Show that a subset A of a topological space X is open if and only if A = int(A).

?11. Find the interiors and closures of the following sets in the given spaces:

(a) (0, 1] in Rusual.
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(b) (0, 1] in the Sorgenfrey Line.

(c) (0, 1] in (R, Tindiscrete).

(d) (0, 1] in (R, Tdiscrete).

(e) (0, 1] in (R, Tray).

(f) (0, 1] in (R, Tco-finite).

(g) The set E of even numbers in (Z, Tco-finite).

(h) Q in Rusual.

(i) Q in the Sorgenfrey Line.

(j) Q×Q in R2
usual.

(k)
{

(x, y, z) ∈ R3 : x = 0
}

in R3
usual.

Another new definition, intimately connected to interiors and closures.

Definition 3.2. Let (X, T ) be a topological space and let A ⊆ X. We define the boundary of A

in (X, T ), denoted ∂(A), by

x ∈ ∂(A) if and only if for every open set U containing x, U ∩A 6= ∅ and U ∩ (X \A) 6= ∅.

Intuitively, these are the points that are close to both A and its complement.

?12. Let A be a subset of a topological space X. Show that ∂(A) = A ∩X \A = A \ int(A).

?13. Let A be a subset of a topological space X. Show that A = A∪∂(A) and int(A) = A\∂(A).

??14. Let A be a subset of a topological space X. Show that X = int(A) t ∂(A) t int(X \A).

(The t is the “disjoint union” symbol. It denotes the same operation as the usual ∪, but

specifies that the sets being unioned are disjoint. So to give a full solution, you must show

that the three sets above are disjoint, and that their union is X.)

??15. A subset A of a topological space X is called regular open if int
(
A
)

= A. Regular open

sets play an important role in set theoretic topology.

(a) Show that in Rusual, any open interval (a, b) is regular open.

(b) Let A be a subset of a topological space X. Is it true that int
(
A
)

= int(A)? If not,

is there containment one way or the other?

(c) Show that the intersection of two regular open sets is again regular open (in any

topological space).

(d) Is the union of two regular open sets again regular open? Prove it or give a coun-

terexample.
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(e) Given a subset A of a topological space X, let A⊥ = X \ A. Show that a set A is

regular open if and only if (A⊥)⊥ = A.

??16. Let A be a subset of Rn with its usual topology. Show that x ∈ A if and only if there

exists a sequence of elements of A that converges to x.

??17. We have already learned that Q is dense in R with its usual topology. Is Q \ {0} dense?

How about if you remove finitely many points from Q? Is there an infinite set of points

you can remove from Q that leaves the resulting set dense?

??18. Let (X, T ) be a topological space, and let D1 and D2 be dense open subsets of X. Prove

that D1 ∩ D2 is dense and open. Give an example in Rusual to show that this does not

extend even to countably infinite intersections. That is, give an example of a collection

{Dn : n ∈ N } of dense open subsets of Rusual such that
⋂∞
n=1Dn is not open (as you will

soon see, such an intersection must be dense).

??19. Recall the Furstenberg topology TFurst on Z, introduced in the exercises from the previous

section. To remind you, this is the topology on Z generated by the basis consisting of

all infinite arithmetic progressions in Z. Earlier, you proved that every nonempty open

subset in TFurst is infinite. You also proved that for every basic open set U in TFurst, Z \U
is open. We now know this is the same as saying every basic open subset is closed.

You are going to use this topology to give a slick, elegant proof that there are infinitely

many prime numbers.

(a) Using the notation from when this topology was first introduced, show that

Z \ {−1, 1} =
⋃

p is prime

Z(p, 0).

(b) Assume for the sake of contradiction that there are only finitely many primes. Deduce

from this assumption that Z \ {−1, 1} is closed.

(c) Find a contradiction resulting from the previous part, and conclude that there must

be infinitely many primes.

???20. Prove that if {Dn : n ∈ N } is a collection of dense open subsets of Rusual, then
⋂∞
n=1Dn

is dense.

This is a special case of a famous result called the Baire Category Theorem. You will need

the result of Exercise 16 above and you might need to recall the definition of a Cauchy

sequence. This is hard, but probably not as hard as you might expect for a “famous”

theorem. Try to extend the argument you used to prove that the intersection of two (and

therefore finitely many) dense open sets is dense open in a clever way.

Give an example in Rusual to show that this result does not extend to arbitrary (ie. un-

countable) intersections.
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†21. This is a famous problem called the Kuratowski 14-set problem.

Let (X, T ) be a topological space, and let A ⊆ X. Prove that at most 14 distinct sets can

be obtained by successively applying the operations of closures and complements to A any

(finite) number of times. Give an example of a subset A ⊆ R with its usual topology such

that 14 different sets can be obtained in this way.

Feel free to do some research on this problem online. Many detailed write-ups are available

on the subject. It is really more of an algebraic problem then a topological one, but I

include it because the result is so striking.
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4 Countability

This section contains several problems that while very interesting, are not directly pertinent to

this course. You are welcome to just attempt the one- and two-star problems if you are not

interested in furthering your knowledge of countability beyond what is necessary to succeed in

MAT327. That said, this is a favourite subject of mine, so I have included some of my favourite

ideas in this section, mostly in the three-star problems.

?1. Construct an explicit bijection f : N→ Z (ie. give a formula for such a bijection).

?2. Prove Proposition 4.11 from the lecture notes on Countability.

While doing this, try to isolate which of the implications involve some amount of the

Axiom of Choice. If you’re not familiar with the Axiom of Choice at the moment, wait

until after we’ve discussed it in lecture before thinking about this.

?3. Let A be a countable set. Prove that Fin(A) := {X ⊆ A : X is finite } is countable.

?4. Let A and B be countable sets. Prove that A × B is countable. Then show that the

Cartesian product of finitely many countable sets is countable.

?5. Complete the proof of Corollary 5.5 in the lecture notes on Countability. That is, if An,

n ∈ N are all countably infinite, mutually disjoint sets and fn : N → An witnesses that

An is countable, prove that g : N×N→
⋃
n∈N An defined by g(n, i) = fn(i) is a bijection.

Conclude from this that a countable union of countable sets is countable.

?6. Show that BQ = { (a, b) ⊆ R : a, b ∈ Q } is countable, and conclude that Rusual is second

countable.

?7. A topological space (X, T ) is said to have the countable chain condition (usually we just say

“(X, T ) is ccc”) if there are no uncountable collections of mutually disjoint open subsets of

X. In an exercise from section 1, you proved that Rusual is ccc. Prove that any separable

space is ccc.

?8. Prove the uncountable pigeonhole principle. That is, if A is an uncountable set and An,

n ∈ N are mutually disjoint subsets of A such that A = ∪n∈NAn, show that at least one of

the An must be uncountable.

??9. Show that B = {Bε(x) ⊆ Rn : x ∈ Qn and 0 < ε ∈ Q } is countable, and conclude that

Rnusual is second countable.

??10. In a previous exercise, you showed that the collection BQ of intervals [a, b) with rational

endpoints is not a basis for the Sorgenfrey line. Take this a step further by proving that

there is no countable basis for the Sorgenfrey line. That is, prove that the Sorgenfrey line

is not second countable.
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??11. Suppose A ⊆ R is countable. Show that there exists a real number x such that A∩(x+A) =

∅. (Here, x+A = {x+ a : a ∈ A }.)

??12. Show that the set 2N of all functions f : N→ {0, 1} is uncountable.

(Hint: Use the fact that P(N) is uncountable.)

??13. Let fn : N→ N (n ∈ N) be a fixed collection of functions. Construct a function g : N→ N
such that for all n ∈ N,

lim
k→∞

g(k)

fn(k)
=∞

(In words, construct a function g that increases faster than all of the fn’s.)

???14. Let f, g : N→ N be functions. Define the set B(f, g) := { k ∈ N : f(k) = g(k) }. That is,

B(f, g) is the set of numbers on which f and g agree.

Your task: Construct a family {fn}n∈N of functions N→ N with the property that for any

g : N→ N and any N ∈ N, there is an fn in your family such that |B(fn, g)| > N .

???15. We have already proved that (0, 1) is uncountable and that P(N) is uncountable. Prove

that these two sets are of the same cardinality. That is, construct a bijection f : P(N)→
(0, 1) as explicitly as possible.

???16. The following is a beautifully slick proof that the real numbers are uncountable.

We define a game for two players. Ahead of time, fix a subset A ⊆ [0, 1].

Player I starts by choosing a number a1 ∈ (0, 1). Player II responds by choosing a number

b1 ∈ (a1, 1). The process then repeats inside the interval [a1, b1]: Player I chooses a number

a2 ∈ (a1, b1), and Player II chooses a number b2 ∈ (a2, b1). The game continues in this

way for all n: at stage n + 1, Player 1 chooses a number an+1 ∈ (an, bn), and Player II

responds by choosing a number bn+1 ∈ (an+1, bn).

At the end of the game, the two players have created a sequence of nested, closed intervals

Cn = [an, bn]. The sequence {an} is increasing by construction and bounded above (by 1,

for example), and so it converges by the Monotone Sequence Theorem. Let a be its limit.

We say that Player I wins the game if a ∈ A, and Player II wins the game if a /∈ A.

Prove that if A is countable, then Player II has a winning strategy. Then prove as an

immediate corollary that [0, 1] is uncountable.

???17. In this exercise, you will prove a very useful fact from set theory called the ∆-System

Lemma.

Definition 4.1. Let A be a set. A collection A of finite subsets of A is called a ∆-system

if there is a finite set r ⊆ A such that a∩ b = r for any distinct a, b ∈ A. The set r, which

may be empty, is called the root of the ∆-system.
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Prove the following:

Theorem 4.2 (∆-System Lemma). Let A be an uncountable set, and let A be an uncount-

able collection of finite subsets of A. Prove that there is an uncountable B ⊆ A that is a

∆-system.

Hint: First use the uncountable pigeonhole principle to reduce to the situation in which

every element of A has size n for some fixed n ∈ N. Then proceed by induction on n. At

some point, you will need to use transfinite induction, or something like it. If you are not

comfortable with that, try to give an intuitive justification of what you have to do, and

discuss it with me afterwards.

???18. Call a subset X ⊆ R2 a “Y-set” if it is the union of three straight line segments that share

a common endpoint. (That is, a set that looks like a capital Y, except the three lines can

meet at any angles and can each be of any finite length.)

Prove that any collection of mutually disjoint Y-sets is countable.

More generally, what other capital letters of the English alphabet have this property? For

example, is there an uncountable collection of mutually disjoint circles (ie. O-sets) in R2?

What about B-sets? H-sets?

†19. (Please note, this problem is very hard, not to mention outside the scope of this course.

The correct solution—at least the one I know—requires a great deal of ingenuity, as well as

some knowledge I do not expect any students in this class to have. If you want to work on

this problem, talk to me and I will be very happy to give you some topics to read about. If

you don not want to get into material outside the scope of this course—and that’s totally

fine—but still want to get something useful out of this problem, you should try to come

up with some reasonable guesses for strategies, and prove why none of them work.)

We define another game, played on R. This one is simpler to define than the previous one.

Player I starts by picking an uncountable set X1 ⊆ R. Player II responds by picking an

uncountable set X2 ⊆ X1. The process then repeats, forming a chain of sets R ⊇ X1 ⊇
X2 ⊇ X3 · · · .

Player I is declared the winner if X :=
⋂
n∈NXn is nonempty, and Player II is declared

the winner if X = ∅.

Prove that Player II always has a winning strategy.
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5 Sequence convergence and first countability

?1. Prove that every Hausdorff space is T1, and that every T1 space is T0.

?2. Let (X, T ) be a T1 topological space, and let x ∈ X. Show the constant sequence

x, x, x, x, . . . converges to x and to no other point.

?3. Let (X, T ) be a topological space. Prove that the following are equivalent.

(a) (X, T ) is T1.

(b) For every x ∈ X, {x} is closed.

(c) Every constant sequence in X converges only to its constant value.

(d) Every finite subset of X is closed.

(e) For every subset A ⊆ X, A =
⋂
{U ⊆ X : U is open and A ⊆ U }.

?4. Let X be uncountable. Show that (X, Tco-countable) is not first countable.

?5. Let X be a finite set. Show that the only T1 topology on X is the discrete topology.

?6. Let X be a set and let T1 and T2 be two distinct topologies on X such that T1 ⊆ T2. If

(X, T1) is Hausdorff, does that imply that (X, T2) is Hausdorff? What about the other

direction? In both cases, prove it or give a counterexample.

?7. Show that every second countable topological space is both separable and first countable.

??8. Which of the spaces have seen so far in the course are first countable? Which are Hausdorff?

This is an exercise you should make a point of doing whenever we define new properties

of topological spaces. Essentially, you should be mentally constructing a table like the

following one, and filling in “yes” or “no” whenever we learn something new. Most of

these have been resolved by examples in the notes or earlier problems, so there isn’t much

to think about in most cases.

T0 T1 Hausdorff separable 1st countable 2nd countable ccc

Rusual

(R, Tco-finite)

(R, Tco-countable)

(R, Tdiscrete)

(R, Tray)

(R, T7)

Sorgenfrey Line

(N, Tco-finite)

(N, Tco-countable)

(N, Tdiscrete)
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??9. A subset A of a topological space (X, T ) is called a Gδ set if it equals a countable inter-

section of open subsets of X. In other words, A ⊆ X is a Gδ set if there exist open sets

Un, n ∈ N, such that A =
⋂
n∈N

Un. Show that in a first countable T1 space, {x} is a Gδ set

for every x ∈ X.

The property that every singleton is a Gδ set is occasionally of specific interest in set

theoretic topology. We often talk about spaces that have “points Gδ”. We will not

consider this property much in our course though.

??10. A topological space is called a Gδ space if every closed set is Gδ. Give an example of a

space that is not a Gδ space.

??11. Let (X, T ) be a first countable topological space, and let A ⊆ X. Prove that x ∈ A if and

only if there is a sequence of elements of A converging to x.

??12. Let (X, T ) be a first countable topological space. Show that every x ∈ X has a countable

nested local basis. That is, for every x ∈ X, show that there is a local basis Bx =

{Bn : n ∈ N } such that B1 ⊇ B2 ⊇ B3 ⊇ · · · .

??13. Is every countable topological space (ie. one in which the underlying set is countable)

separable? What about ccc? Can a countable space be first countable but not second

countable?

???14. Construct a topological space (X, T ) which is countable (ie. X is countable) but not first

countable.

(Note, no topological space we have seen so far does this. You really have to construct a

new space from scratch. Feel free to do some research on the subject, but not before you

spend some time thinking about it.)
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6 Continuous functions and homeomorphisms

?1. Let f : Rn → Rk be continuous in the first-/second-year calculus sense. That is, for

every a ∈ Rn and for every ε > 0 there is a δ > 0 such that x ∈ Bδ(a) ⊆ Rn implies

f(x) ∈ Bε(f(a)) ⊆ Rk. Show that f is continuous in the topological sense we have defined.

(This proof is in the notes, more or less, but go through it yourself to make sure you

understand.)

?2. Let X be a set and let T1 and T2 be two topologies on X. Show that the identity function

id : (X, T1)→ (X, T2) given by id(x) = x is continuous if and only if T1 refines T2.

?3. Show that addition and multiplication, thought of as functions from R2 to R with their

usual topologies, are continuous functions. (That is, show that the map + : R2 → R given

by (x, y) 7→ x + y is continuous). For this problem it will be useful to use one of the

equivalent definitions of continuity given in the lecture notes.

?4. Give an example of a function f : R→ R that is continuous when the domain and codomain

both have the usual topology, but not continuous when they both have the ray topology

or the Sorgenfrey/lower limit topology.

?5. Prove that all the properties in Proposition 6.2 in the lecture notes on continuous functions

are indeed topological invariants. (All of these proofs should be very straightforward from

the definitions, so if you find yourself having to get creative at all you are likely overthinking

things.)

?6. Let (X, T ) and (Y,U) be topological spaces, let D ⊆ X be dense in X, and suppose

f : X → Y is continuous and surjective. Show that f(D) = { f(d) ∈ Y : d ∈ D } is dense

in Y . Conclude that a surjective, continuous image of a separable space is separable.

(This proof is essentially in the lecture notes.)

?7. Let (X, T ) and (Y,U) be topological spaces, and suppose that f : X → Y is a bijection.

Show that the following are equivalent:

(a) f−1 is continuous.

(b) f is open.

(c) f is closed.

(The equivalence between (b) and (c) is Proposition 4.3 in the lecture notes on continuous

functions. Again, these proofs should be immediate from the definitions and some elemen-

tary properties of functions and sets. If you find yourself having to get creative, you are

overthinking.)
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??8. Characterize the continuous functions from Rco-countable to Rusual, and from (R, T7) to

Rusual (recall that T7 is the particular point topology at 7).

??9. This is a result I mentioned several times while talking about sequences (and in the notes

on nets). With our experience with first countable spaces now, it should be relatively

straighforward.

Let (X, T ) and (Y,U) be topological spaces and let f : X → Y .

(a) Suppose f is continuous, and {xn}∞n=1 is a sequence in X converging to a point x.

Show that {f(xn)}∞n=1 converges to f(x).

(b) Suppose (X, T ) is first countable, and suppose for each x ∈ X and each sequence

{xn}∞n=1 that converges to x, {f(xn)}∞n=1 converges to f(x). Show that f is continu-

ous.

??10. Let f : Rusual → Rusual be continuous. Let g : Rusual → R2
usual be defined by g(x) =

(x, f(x)). Show that g is continuous.

(Hint: Use the previous exercise. You don’t have to, but it might be easier.)

??11. Let (X, T ) be a topological space and let f, g : X → Rusual be continuous functions. Prove

that f + g (ie. (f + g)(x) = f(x) + g(x)) is continuous. Do the same for f(x)g(x).

(Hint: I would suggest not doing this directly from the definition of continuity. Also, the

function h : X → R2 defined by h(x) = (f(x), g(x)) might be useful to consider.)

??12. Let (X, T ) be a topological space, and let (Y,U) be a Hausdorff topological space. Let

A ⊆ X be a nonempty subset. Suppose f, g : X → Y are continuous functions that agree

on all points of A (ie. f(a) = g(a) for all a ∈ A). Show that they must agree on all points

of A.

Conclude that Af,g := {x ∈ X : f(x) = g(x) } is closed.

(Note that neither of the spaces need be first countable, so sequences should not be involved

here.)

Also conclude that if f, g : X → Y are continuous functions, D ⊆ X is dense, Y is

Hausdorff, and f(x) = g(x) for all x ∈ D, then f = g. One consequence of this fact is that

in order to define a continuous function f : Rusual → Rusual, it suffices to define it on the

rationals.

???13. Show that Rusual and R2
usual are not homeomorphic.

(This problem will be very easy later in the course, but I want you to think about it now.

Note that no topological invariant we have defined thus far will distinguish them.)

†14. Show that Rnusual is not homeomorphic to Rmusual for any n 6= m where n,m > 1.
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At this point in the course I do not expect anyone in the course to be able to solve this

problem without substantial creativity. As with some previous problems of this difficulty, I

would like you to spend some time think about it. In particular, if you asked someone who

cared about vector space structure (we do not care about that in this course) this question,

they would say “the two spaces have different dimensions, so they cannot be isomorphic

as vector spaces”. This is because “having dimension n” is an invariant property of vector

spaces.

The natural question is then whether there is a topological notion of dimension. This is

an interesting question, because topological spaces are much more interesting than vector

spaces (particularly than finite-dimensional vector spaces). There are a few such notions,

but defining them is quite tricky. It seems obvious that Rnusual should have dimension n,

but what about other topologies on the reals? Do Rusual and the Sorgenfrey Line feel they

should have the same dimension? What about Rusual and Q? These are hard questions,

and should give you some feeling for how much work it takes to define a topological notion

of dimension.
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7 Subspaces

?1. Let (X, T ) be a topological space and let Y be a subspace of X. Show that if U is an open

subset of Y and Y is an open subset of X, then U is an open subset of X.

?2. Let A be a subspace of X. For any B ⊆ A, show that clA(B) = A∩ clX(B), where clX(B)

denotes the closure of B computed in X, and similarly clA(B) denotes the closure of B

computed in the subspace topology on A.

?3. Let f : X → Y be a continuous function, and let A be a subspace of X. Show that the

restriction of f to A, f � A : A→ Y , is continuous.

?4. Let f : X → Y be a homeomorphism, and let A be a subspace of X. Show that B := f(A)

is a subspace of Y , and f � A : A→ B is a homeomorphism.

?5. Let B be a subspace of Y , and let f : X → B be a continuous function. Show that

f : X → Y is continuous (we are not altering the function here at all, just expanding the

space we think of as its codomain).

?6. Prove the Pasting Lemma. That is, let (X, T ) and (Y,U) be topological spaces, and let

A,B ⊆ X be both closed (or both open) subsets of X such that X = A ∪ B, thought of

as subspaces. Suppose f : A → Y and g : B → Y are continuous functions that agree on

A ∩B (ie. f(x) = g(x) for all x ∈ A ∩B). Define h : X → Y by

h(x) =

f(x) x ∈ A

g(x) x ∈ B

Show that h is continuous.

?7. Prove that the properties of being countable, first countable, second countable, T0, and T1

are all hereditary.

?8. We saw in the lecture notes that separability is not hereditary. Show that an open subspace

of a separable space is separable. That is, show that if (X, T ) is a separable space and

U ⊆ X is open, then U with its subspace topology is separable.

(A property that is inherited by every open subspace is sometimes called weakly heridi-

tary.)

?9. Let (X, T ) be a topological space, and let A ⊆ X. Let i : A→ X be the inclusion function,

defined by i(x) = x. Show that the subspace topology A inherits from X is the coarsest

topology on A such that i is continuous.

?10. Let (X, T ) be a topological space, and let A ⊆ X. A is called sequentially closed if the

limit point of every convergent sequence {xn} ⊆ A is in A. We already know that every
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closed set is sequentially closed. (X, T ) is called sequential if every sequentially closed

subset is closed.

Show that the property of being sequential is a topological invariant.

??11. Let (X, T ) and (Y,U) be topological spaces, and let A ⊆ Y be a subspace (with its subspace

topology inherited from Y ). If there is a homeomorphism f : X → A, we say that X is

embedded in Y , and that f is an embedding.

Give examples of topological spaces X and Y such that X is embedded in Y and Y is

embedded in X, but which are not homeomorphic.

??12. This exercise is a prelude to a subject we will talk about at the end of the course. For the

moment, you can use it to solve one of the harder problems from earlier in the notes.

(a) In a topological space (X, T ), the sets X and ∅ are always both clopen (that is, both

closed and open). These two are called trivial clopen subsets of X. Show that the

property of having a nontrivial clopen subset is a topological invariant.

(b) In a topological space (X, T ) with no nontrivial clopen subsets, a point p ∈ X is

called a cut point if X \ {p} (with its subspace topology) has a nontrivial clopen

subset. Show that for any n ∈ N, the property of having n cut points is a topological

invariant.

(c) You may assume that Rusual has no nontrivial clopen subsets. Prove that no two

of (0, 1), [0, 1), and [0, 1] with their subspace topologies inherited from Rusual are

homeomorphic.

(d) Show that Rusual is not homeomorphic to Rnusual for all n > 1.

??13. Let (X, T ) and (Y,U) be topological spaces, and let f : X → Y be a function. f is called

a local homeomorphism if for every x ∈ X there is an open set U ⊆ X containing x and

an open set V ⊆ Y such that f � U : U → V is a homeomorphism (where U and V have

their subspace topologies).

(a) Show that every homeomorphism is a local homeomorphism.

(b) Show that every local homeomorphism is continuous and open, and conclude that a

bijective local homeomorphism is a homeomorphism.

(c) Give an example of a map f : X → Y between topological spaces that is a local

homeomorphism but not a homeomorphism.

???14. In the last problem of the previous section we saw that it might be useful to define a

“dimension” for topological spaces. There are at least three reasonable definitions of di-

mensions that I know. Here we will define one called the inductive dimension (or sometimes

the small inductive dimension).
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Let (X, T ) be a topological space. We define the inductive dimension ind(X) recursively

as follows.

(a) ind(∅) is defined to equal −1.

(b) ind(X) ≤ n if for every x ∈ X and every open set U containing x, there exists an

open set V such that x ∈ V ⊆ U and ind(∂V ) ≤ n − 1. (Recall that ∂V is the

boundary of V , here considered as a subspace of X.)

(c) ind(X) := n if ind(X) ≤ n and ind(X) 6≤ n− 1.

(d) ind(X) :=∞ if ind(X) 6≤ n for all n ∈ N.

This definition looks extremely complicated, but once you work with it a bit you will begin

to like it. Here are some exercises to start you off.

(a) Prove that the inductive dimension of a topological space is a topological invariant.

(b) Prove that if (X, T ) has a basis consisting of clopen sets, then ind(X) = 0. This

result allows you to conclude that some spaces we have seen are are 0-dimensional in

this sense. Which ones?

(c) Prove that ind(Rusual) = 1, ind(R2
usual) = 2, and ind(R3

usual) = 3.

???15. This is for the budding category theorists out there. It is not actually that hard, just a bit of

a specialized problem. What we are going to do here is give an alternative characterization

of the subspace topology in terms of what is called a universal property.

Let (X, T ) be a topological space, and let A ⊆ X. Let i : A→ X be the inclusion function,

defined by i(x) = x. Suppose TA is a topology on A. Show that TA is the subspace topology

inherited from X if and only if it has the following property:

For any topological space (Y,U) and any function f : (Y,U)→ (A, TA), f is continuous if

and only if i ◦ f : Y → X is continuous.

†16. Construct an example to demonstrate that the property of being sequential is not heredi-

tary.

If you are interested in doing this problem, you will likely need some extra guidance. Please

feel free to talk to me about it and I will give you some things to read about.
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8 Finite products

There isn’t really too much interesting to ask about finite products at this stage. We will more

than make up for this when we start talking about infinite products, which are very interesting.

?1. Let (X, T ) and (Y,U) be topological spaces. Show that X × Y ' Y ×X.

?2. Let (X, T ) and (Y,U) be topological spaces, and let A and B be subsets of X and Y ,

respectively. Show that A×B = A×B and int(A×B) = int(A)× int(B).

?3. Prove that the following topological properties are all finitely productive.

(a) T0 and T1.

(b) Separable.

(c) First countable.

(d) Second countable.

(e) Finite (ie. the underlying set of the space is finite).

(f) Countable.

(g) The property of being a discrete space.

(h) The property of being an indiscrete space.

?4. Prove explicitly that R2
usual = (Rusual)

2. (Equal, not just homeomorphic.)

?5. Let (X, T ) and (Y,U) be topological spaces, and let A and B be subspaces of X and

Y respectively. Show that the product topology on A × B defined from the subspace

topologies on A and B is equal to the subspace topology A×B inherits from the product

topology on X × Y .

?6. Let (X, T ) and (Y,U) be topological spaces, and let π1 and π2 be the usual projections.

Show that they are both open functions.

?7. Let (X, T ) be a topological space. Define a subset of X2 = X ×X called the diagonal by

∆ :=
{

(x, x) ∈ X2 : x ∈ X
}
.

Show that (X, T ) is homeomorphic to ∆ with its subspace topology inherited from the

product topology on X2.

?8. This is one of the all-time classic topology problems. Let (X, T ) be a topological space.

Prove that (X, T ) is Hausdorff if and only if ∆ (as defined in the previous problem) is

closed in the product topology.

??9. Show that (RSorgenfrey)2 is separable but not hereditarily separable.
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9 Stronger separation axioms

?1. Show that a topological space (X, T ) is regular if and only if for every point x ∈ X and

every open set U containing x, there is an open set V such that x ∈ V ⊆ V ⊆ U . (Be sure

to draw a picture.)

?2. Show that a topological space (X, T ) is normal if and only if for every open set U and

every closed set C ⊆ U , there is an open set V such that C ⊆ V ⊆ V ⊆ U . (Again, be

sure to draw a picture.)

?3. Prove that regularity is a topological invariant.

?4. Prove that regularity is finitely productive. (Hint: This is easiest to do using the alternative

characterization of regularity given in the first problem.)

?5. Prove that normality is a topological invariant.

?6. Prove that every closed subspace of a normal topological space is normal.

??7. Show that RSorgenfrey is normal.

At this point, we will give some new definitions of finer properties, and ask some questions

about them afterwards.

Definition 9.1. A topological space (X, T ) is said to be T2.5 (often also called a Urysohn

space) if for any two distinct points x, y ∈ X, there are open sets U and V containing x

and y respectively such that U ∩ V = ∅.

Definition 9.2. Let (X, T ) be a topological space. We say two points x, y ∈ X can be

separated by a continuous function if there exists a continuous function f : X → [0, 1] such

that f(x) = 0 and f(y) = 1 (here, [0, 1] is understood to have its subspace topology induced

by Rusual).

Similarly, if A ⊆ X and x /∈ A, we say x and A can be separated by continuous function

if there exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(a) = 1 for all

a ∈ A.

Finally, we say that two disjoint subsets A and B of X can be separated by continuous

functions if there exists a continuous f : X → [0, 1] such that f(x) = 0 for all x ∈ A and

f(y) = 1 for all y ∈ B.

Definition 9.3. Let (X, T ) be a topological space.

• (X, T ) is said to be completely Hausdorff if every pair distinct points can be separated

by a continuous function.
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• (X, T ) is said to be completely regular if every x ∈ X and every closed set C ⊆ X

not containing x can be separated by a continuous function. (X, T ) is said to be T3.5

(or sometimes a Tychonoff space) if it is completely regular and T1.

Here it seems like we might define completely normal to be a space in which any two closed

sets can be separated by a continuous function. However, that property turns out to be

equivalent to normality. This result is called Urysohn’s Lemma, and the proof is one of

the most interesting and most nontrivial proofs we will discuss in this class. For now, you

may use this result without proof, which we state here for clarity:

Theorem 9.4 (Urysohn’s Lemma). A topological space is normal if and only if every pair

of disjoint, nonempty closed sets can be separated by a continuous function.

To make up for this unusual feature of the hierarchy we are constructing, we have more

definitions of stronger properties than normality:

Definition 9.5. Let (X, T ) be a topological space.

• Two subsets A and B of X are called separated if A ∩B = A ∩B = ∅.

• (X, T ) is called completely normal if whenever A and B are separated subsets of X,

then there are disjoint open subsets U and V of X such that A ⊆ U and B ⊆ V .

A space that is completely normal and T1 is sometimes called T5.

• (X, T ) is called perfectly normal if whenever C and D are disjoint, nonempty, closed

subsets of X, there exists a continuous function f : X → [0, 1] such that C = f−1(0)

and D = f−1(1).

A space that is perfectly normal and T1 is sometimes called T6.

?8. Show that every completely regular space is regular.

?9. Prove that every T3 space is T2.5, and that every T2.5 space is T2.

?10. Prove that every perfectly normal space is normal, and that every completely normal space

is normal.

?11. Show that all of the properties we just defined are topological invariants.

??12. Show that every completely Hausdorff space is T2.5.

??13. Show that complete regularity is hereditary, and finitely productive.

??14. Show that a topological space is completely normal if and only if it is hereditarily normal.

(In particular, note that since we have already mentioned that normality is not hereditary,

this result shows that complete normality is strictly stronger than normality.)
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??15. Two very useful ways of characterizing perfect normality are given by the following theo-

rem. For now, you may assume this theorem without proof.

Theorem 9.6. Let (X, T ) be a topological space. Then the following are equivalent.

(a) X is perfectly normal.

(b) For every closed C ⊆ X, there is a continuous function f : X → [0, 1] such that

C = f−1(0).

(We would refer to this property by saying “every closed set is a zero set”.)

(c) X is normal, and every closed subset of X is Gδ.

(Recall that a subset of a topological space is called Gδ if it is equal to a countable

intersection of open sets.)

Using this theorem, show that the property of being perfectly normal is hereditary, and

conclude from the previous exercise that every perfectly normal space is completely normal.

?16. From the previous exercises in this and an earlier section, conclude that

T6 ⇒ T5 ⇒ T4 ⇒ T3.5 ⇒ T3 ⇒ T2.5 ⇒ T2 ⇒ T1 ⇒ T0.

(This is as full as this hierarchy ever gets.)

???17. In this exercise you’re going to prove the theorem just above.

First, prove the equivalence between (a) and (b). This should be very simple.

Next, recall from an earlier exercise that a subset of a topological space is called Gδ if it

is equal to a countable intersection of open sets. Prove that a topological space (X, T ) is

perfectly normal (in the sense of Definition 9.5) if and only if it is normal and every closed

subset of X is Gδ.

(You will need to use Urysohn’s Lemma for at least one direction.)

???18. Construct a topological space to show that T2 6⇒ T2.5. (Hint: Try some ideas similar to

the Furstenburg topology.)

It is also true that T2.5 6⇒ T3, though the example is not something anyone could reasonably

come up with. Take a look at Example 78 in Counterexamples in Topology for more

information.
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10 Orders and ω1

?1. Consider the following two ways of defining a topology on on any subset of R. If X ⊆ R,

we can give X its subspace topology inherited from Rusual, which we will call T R
X , or we

can give it the order topology (since (X,≤) is a linear order), which we will call T OX .

Give an example of a set X ⊆ R such that (X, T R
X ) ' (X, T OX ), and another example such

that (X, T R
X ) 6' (X, T OX ). Be sure to prove your claims as explicitly as possible.

?2. Let (L,≤) be a linear order. A subset X ⊆ L is called convex if for every x < y ∈ X, we

have (x, y) ⊆ X (where this interval is always defined in L). Colloquially, X is convex if

it has no gaps as an order under ≤.

(a) Give an example of a convex and a non-convex subset of R.

(b) Give an example of a convex and a non-convex subset of Q.

(c) Show that the intersection of two convex sets is convex.

(d) Is the union of two convex sets convex?

(e) Show that if X ⊆ L is convex, then its subspace topology inherited from the order

topology on L is equal (not just homeomorphic, but equal) to the order topology on

X when seen as a linear order on its own.

?3. Let (W,≤) be a well-order, and let S ⊆W be non-empty. Show that S has a unique least

element.

?4. Let (W,≤) be an infinite well-order. Show that there is a “copy” of the well-order N at

the “bottom” of W .

(Hint: Show that there is a least element of W , then a second-least element of W , etc.)

?5. Let (W,≤) be a linear order. Show that it is a well-order if and only if it contains no

infinite, decreasing chains.

?6. Show that a subset of ω1 is countable if and only if it is bounded.

?7. Let m = min(ω1). Show that {m} is clopen in ω1.

?8. Show that ω1 is not discrete.

(Hint: Find a “copy” of ω + 1 in ω1.)

?9. Key fact. Let {αn}n∈N be a sequence of elements of ω1. Show that there is a α ∈ ω1 such

that ⋃
n∈N

pred(αn) = pred(α).
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(This is a property of ω1 as a well-order, not as a topological space.) This property is a

stronger way of saying that every countable subset of ω1 is bounded above. It plays a key

role in many proofs about ω1.

?10. Using the same notation as the previous problem, show that any increasing sequence {αn}
converges to α.

This connects the key fact from the previous exercise to the topology on ω1. Henceforth,

given a sequence {αn}n∈N of elements of ω1, we will refer to the α guaranteed by the key

fact as limαn.

??11. Let X = [0, 1] × [0, 1] be the unit square, and let � be the lexicographical order on X

induced from the usual linear order on both copies of [0, 1]. That is, for (x1, y1) and (x2, y2)

in X, define

(x1, y1) � (x2, y2) if and only if x1 < x2 or both x1 = x2 and y1 ≤ y2.

Before proceeding any further, be sure to draw a picture of this space and think about

what the ordering looks like.

Let T be the order topology defined by �. Consider the following questions about the

(X, T ).

(a) For any a ∈ [0, 1], show that any “vertical slice” of the form Va = { (a, y) ∈ X : y ∈ [0, 1] }
is not open.

(b) Is this space second countable? First countable?

(c) Is this space separable or ccc?

??12. In this problem we will explore convexity a little more. Recall the property we defined in

Problem 10.2 just above.

(a) Let (W,≤) be a linear order, and let f : [0, 1]→ W be a continuous function (where

[0, 1] has its usual topology and W has its order topology). A function of this form

essentially traces out a path in W . Show that the range of f is convex.

(Hint: Recall the fact that [0, 1] has no nontrivial clopen subsets.)

(b) Let (X, T ) be the space from the previous exercise (the lexicographical order on

the unit square). Suppose that f : [0, 1] → X is continuous, f(0) = (0, 0), and

f(1) = (1, 1).

Show that f is surjective.

(c) Show that there are no functions with the properties described in part (b).

??13. The lecture notes mentioned that well-orders are exactly what you need to do induction.

You will show that here.

Let (W,≤) be a well-order. Suppose S ⊆W has the following two properties:
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(a) min(W ) ∈ S.

(b) If y ∈W is such that x ∈ S for all x < y, then y ∈ S.

Show that S = W .

??14. Show that no subspace of Rusual is homeomorphic to ω1.

??15. Show that no subspace of ω1 is homeomorphic to Q (with its subspace topology from

Rusual).

(Hint: You will have to make up your own topological invariant, but you can do it with

some quite simple ones.)

??16. Suppose that {αn} and {βn} are sequences in ω1 with the property that for each n,

αn ≤ βn ≤ αn+1. Show that limαn = limβn.

??17. Let A,B ⊆ ω1 be disjoint, closed sets. Show that one of A or B must be countable.

(Hint: Use the result of the previous exercise.)

??18. An element α ∈ ω1 is called a successor if pred(α) has a maximal element (maximal in

the sense of the order on ω1). If α is not a successor and pred(α) 6= ∅, α is called a limit.

(These names come from the set theoretic definition of ω1.)

Show that α is a successor if and only if {α} is open.

??19. Show that in the space ω1 + 1, the set {Ω} is closed but not Gδ. (Recall that a subset

of a topological space is called a Gδ set if it is equal to a countable intersection of open

sets.) Conclude, using the result of an exercise from the previous section, that ω1 + 1 is

not perfectly normal.

???20. Show that every continuous function f : ω1 → R is eventually constant. That is, there is

an α ∈ ω1 and an x ∈ R such that f(β) = x for all α < β ∈ ω1.

This is a lovely fact. There are two ways of approaching this that I know. The “cleaner”

proof goes through a very important set theoretical fact called The Pressing Down Lemma,

which you are encouraged to look up. Feel free to talk to me about it.

The other approach is more hands-on, and therefore a little trickier, but does not involve

any concepts you do not know yet. Here is a nudge in the right direction:

First, note that it suffices to prove that any continuous function f : ω1 → (0, 1) is eventually

constant. So suppose f is a continuous function of this sort, fix n ∈ N, and divide [0, 1]

into closed intervals of length 1
2n . Take preimages of these intervals, and apply the fact

about disjoint closed subsets of ω1.
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11 The Axiom of Choice and Zorn’s Lemma

As mentioned in class and in the lecture notes, you will never be tested specifically on the Axiom

of Choice or Zorn’s Lemma, though you will be expected to do simple proofs using Zorn’s Lemma.

This section is mostly designed for those students interested in learning a little more about the

Axiom of Choice and its equivalents. You are very welcome to come to me for clarification or

guidance with the harder questions in this section.

I recommend that every student do at least the first problem in this section. The

concepts introduced there will come up again in an important proof later in the course, at which

time you will be expected to be familiar with them.

??1. For this question we will recall some definitions first presented in the supplementary notes

about nets and filters.

Definition 11.1. Let X be a set. A nonempty collection F ⊆ P(X) is called a filter on

X if the following three properties are satisfied:

(a) ∅ /∈ F .

(b) F is closed upwards: if A ∈ F and A ⊆ B, then B ∈ F .

(c) F is closed under finite intersections: if A,B ∈ F , then A ∩B ∈ F .

A filter F on a set X is called an ultrafilter if it is not properly contained in any other

filter on X.

Your task: Use Zorn’s Lemma to prove that every filter on a set X is contained in (or

“can be extended to”, as is often said) an ultrafilter.

Hint: A filter F on X is a set of subsets of X. In other words, F ∈ P(P(X)). Let

F ⊆ P(P(X)) be the collection of all filters on X. Then (F,⊆) is a partial order, to

which you can apply Zorn’s Lemma—after you prove it satisfies the hypotheses of Zorn’s

Lemma, of course. This is not the partial order that will solve this problem, but it is a

good starting point. As a warm up exercise, first show that a filter F ∈ F is an ultrafilter

if and only if it is a maximal element in this partial order.

??2. Here is another simple use of Zorn’s Lemma. First, a definition.

Definition 11.2. A subset A ⊆ R is called distance special if the usual distance func-

tion d : R × R → R given by d(x, y) = |x − y| is injective when restricted to the set

{ (a, b) ∈ A×A : a < b }. That is, d(a, b) = d(c, d) > 0 implies that a = c and b = d, for

all a, b, c, d ∈ A.

For example, the set { 2n : n ∈ N } ⊆ R is distance special.
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Your task: Use Zorn’s Lemma to show that every uncountable set B ⊆ R contains an

uncountable distance special subset.

Hint: At one point in the proof, you may find the result of problem 4.11 useful.

??3. Show that Zorn’s Lemma implies the Axiom of Choice.

Hint: Let A = {Aα : α ∈ I } be a nonempty collection of nonempty sets. Think of a

choice function on A as a function f : I →
⋃
A such that f(α) ∈ Aα for all α ∈ I.

Let P be the collection of all functions f such that dom(f) ⊆ I and f(α) ∈ Aα for all

α ∈ dom(f). Define an ordering ≤ on P by saying f ≤ g if and only if g extends f as a

function (ie. g has a larger domain, and agrees with f on all points in the domain of f).

Then carefully apply Zorn’s lemma to the partial order (P,≤).

??4. Show that Zorn’s Lemma implies the Well-Ordering Principle.

Hint: The basics of this proof are outlined in the lecture notes on the Axiom of Choice.

???5. Prove that the Well-Ordering Principle implies Zorn’s Lemma.

This proof is not actually hard, it just requires transfinite induction. Here is a hint on how

to get started. Let (P,≤) be a partial order satisfying the hypotheses of Zorn’s Lemma.

Well-order P, then inductively build a chain whose upper bound must be a maximal element

of the partial order.

???6. This question will guide you through a proof that the Axiom of Choice implies Zorn’s

Lemma. As with the previous problem this proof is not a very difficult one, other than the

fact that it involves transfinite induction and ordinals. I am going to do most of the work

for you. Your job is essentially to convince yourself that these things make sense. You do

need to have some experience with ordinals though.

This is a proof by contradiction. So suppose (P,≤) is a counterexample to Zorn’s Lemma.

That is, a partial order in which every chain has an upper bound, but which has no

maximal elements.

(a) Show explicitly from the Axiom of Choice that there exist functions f and g such that

for every chain C ⊆ P, f(C) is an upper bound for C, and such that for every p ∈ P,

g(p) > p.

(b) Using the functions from (a) and transfinite induction, define a “sequence” {pα}α∈Ord

(Ord is the class of ordinals) in P. Let p0 be arbitrary. For successor ordinals α + 1, let

pα+1 = g(pα). For limit ordinals α, let pα = f({ pβ : β < α }).

Convince yourself that this all makes sense.

(c) Show that this “sequence” is increasing. That is, α < β implies pα < pβ. Conclude

that the map a 7→ pα is injective.
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(d) We have now constructed an injection Ord→ P. This is a contradiction, because Ord

is not a set.
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12 Metric spaces and metrizability

?1. Show that the functions defined in each part of Example 2.2 in the lecture notes on Metric

Spaces and Metrizability are actually metrics.

Hint: One part of this is actually kind of tricky: showing that d2(f, g) =
√∫ 1

0 |f(x)− g(x)|2 dx
satisfies the triangle inequality. For that you will need the following version of Hólder’s

Inequality: ∫ 1

0
|f1(x)f2(x)| dx ≤

(∫ 1

0
|f1(x)|2 dx

) 1
2
(∫ 1

0
|f2(x)|2 dx

) 1
2

?2. Let (X1, T1) and (X2, T2) be metrizable spaces. Prove that X1 × X2 with its product

topology is metrizable. (Hint: Complete the proof of Proposition 4.3 in the lecture notes.)

?3. Prove that every metrizable space is Hausdorff.

?4. Let X = C[0, 1] be the set of all continuous functions f : [0, 1] → R (where the domain

and codomain have their usual topologies). In question 12.1 above, you showed that the

function d1 : X ×X → R given by

d1(f, g) =

∫ 1

0
|f(x)− g(x)| dx

is a metric, so we can consider the metric topology on X. Show that the function F : X →
R given by

F (f) =

∫ 1

0
f(x) dx

is continuous (where X has the metric topology generated by d1, and R has its usual

topology).

?5. This exercise completes the proof of Proposition 7.2 from the lecture notes.

Let (X, d) be a metric space. Define d : X × X → R by d(x, y) = min{1, d(x, y)}. Also

define d0 : X ×X → R by

d0(x, y) =
d(x, y)

1 + d(x, y)
.

(a) Prove that d and d0 are metrics.

(b) Prove that (X, d) and (X, d0) are bounded metric spaces. (This is as easy as it looks.)

(c) Prove that d and d0 both generate T .

?6. Let (X1, d1) and (X2, d2) be metric spaces. Let f : X1 → X2 be a surjective isometry

(which, to remind you, is a function that preserves distances). Prove that f is a homeo-

morphism of topological spaces (where X1 and X2 have their metric topologies generated

by d1 and d2 respectively).
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?7. Let (X, d) be a metric space, and let A,B ⊆ X be nonempty subsets, and let x ∈ X.

Define

d(x,A) = inf { d(x, a) : a ∈ A } ,

d(A,B) = inf { d(a, b) : a ∈ A, b ∈ B } .

(a) Show that both of these notions are well-defined.

(b) Show that if A ∩B 6= ∅, then d(A,B) = 0.

(c) Give an example showing that the implication in the previous part does not reverse.

That is, give an example of a metric space (X, d) and two disjoint subsets A,B ⊆ X
such that d(A,B) = 0.

(d) Show that these definitions are connected in the following ways:

• d(x,A) = d({x}, A).

• d(A,B) = inf { d(a,B) : a ∈ A } = inf { d(A, b) : b ∈ B }.

(e) Show that A ⊆ X is closed (in the topology generated by d) if and only if d(x,A) 6= 0

for all x ∈ X \A.

??8. Prove that every metrizable space is regular.

(Hint: This exercise and the next one are two-star problems if you’re seeing the idea

involved for the first time. For us though, you can mirror the proofs that Rusual is regular

and normal.)

??9. Prove that every metrizable space is normal.

??10. This is a multi-part, guided exercise in which you are going to prove that every metrizable

ccc space is second countable, completing the proof of Proposition 5.3 from the lecture

notes. You will actually prove that a metrizable ccc space is separable, and then that a

metrizable separable space is second countable.

Let (X, T ) be a metrizable, topological space with the countable chain condition. Let d

be a metric on X that generates the topology T . All ε-balls we refer to below will be with

respect to this metric.

(a) Fix n ∈ N. Show that there exists a maximal collection of mutually disjoint 1
n -balls

in X. (Maximal with respect to inclusion. That is, show that there is a collection Bn
of mutually disjoint 1

n -balls in X that is not properly contained in any larger such

collection.)

(Hint: Use Zorn’s Lemma.)

(b) For each n ∈ N, suppose Bn is a collection as in the previous part. Let Cn ⊆ X be

the collection of centres of the balls in Bn, and finally let C =
⋃
n∈NCn. Show that

C is a countable, dense subset of X. Conclude that (X, T ) is separable.
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(Hint: First, show that C is countable. Next, to show it’s dense, do a proof by

contradiction. Suppose C is not dense, and fix an open set U such that C ∩ U = ∅.
After a little bit of work, you can contradict the maximality of one of the Bn’s.)

Conclude from this and the previous part that any metrizable ccc space is separable.

(c) Now that we know that (X, T ) is separable. Prove that every separable metrizable

space is second countable. (Hint: Use the fact that every point in a metric space has

a particularly nice countable local basis.)

??11. In this exercise you are going to learn about two types of convergence of sequences of

functions that are very important to analysis, and prove an important fact about one of

them.

Definition 12.1. Let X be a set and let (Y,U) be a topological space. Let {fn}n∈N be a

sequence of functions fn : X → Y . We say that the sequence converges pointwise to a

function f : X → Y if the sequence {fn(x)}n∈N converges to f(x) for all x ∈ X.

Definition 12.2. Let X be a set and let (Y, d) be a metric space. Let {fn}n∈N be a

sequence of functions fn : X → Y . We say that the sequence converges uniformly to a

function f : X → Y if for all ε > 0 there is N ∈ N such that d(fn(x), f(x)) < ε for all

n > N and for all x ∈ X.

(a) Let X be a set and (Y, d) a metric space, also thought of as a topological space with

the topology generated by d. Suppose {fn}n∈N is a sequence of functions fn : X → Y

that converges uniformly to a function f . Show that {fn} also converges pointwise

to f .

(b) Find a sequence of continuous functions fn : [0, 1] → [0, 1] that converges pointwise

to the zero function, but does not converge uniformly to anything. (Here, [0, 1] has

its usual topology generated by its usual metric.)

(The reason this exercise is interesting is that if {fn(x)} converges to some point px

for all x, it is tempting to define a function f by f(x) = px and conclude that {fn}n∈N
converges uniformly to f . The example you come up with shows that this need not

be the case.)

(c) This result is the big payoff of defining uniform convergence.

Let (X, T ) be a topological space and (Y, d) a metric space (also thought of as a

topological space with the topology generated by d). Suppose {fn}n∈N is a sequence

of continuous functions fn : X → Y that converges uniformly to a function f . Show

that f must also be continuous.

(Hint: This is an “ε/3 proof”.)

??12. This proof is quite easy, but it requires two new definitions. Neither of them are tricky.
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Definition 12.3. Let X be a set and f : X → X a function. A point x ∈ X is called a

fixed point of f if f(x) = x.

Definition 12.4. Let (X, d) be a metric space. A function f : X → X is called a contrac-

tion if there is an α ∈ (0, 1) such that d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X.

So, a contraction is just a map that decreases the distance between all pairs of points, by

at least a fixed amount.

(a) Give an example of a metric space (X, d) and a map f : X → X such that d(f(x), f(y)) <

d(x, y) for every distinct x, y ∈ X, but such that f is not a contraction.

(b) Let (X, d) be a metric space. Prove that every contraction f : X → X has at most

one fixed point.

??13. Let F be a fixed, finite set of points in R2. Prove that there is a unique closed ball of

minimal radius containing all the points in F .

This result is true in Rn for all n. You may find it interesting to think about how you

would have to modify your proof in higher dimensions (if at all).

If you’re a computer scientist, you should try to design an efficient algorithm that finds

this ball. Try to do better than O(n2), where n is the number of points in F .

???14. Prove the following lovely theorem. It is not actually that difficult, but it requires a

somewhat novel idea.

Theorem 12.5 (Contraction Mapping Theorem). Let (X, d) be a complete metric space,

also thought of as a topological space with the topology generated by d. Let f : X → X be

a contraction. Then f has exactly one fixed point.

Hint: The core idea of the proof is illustrated by this image.

???15. Prove the Baire Category theorem, now that we have the terminology to state it in full

generality.

That is, prove that if (X, d) is a complete metric space thought of as a topological space

with the topology generated by d, then the intersection of countably many dense, open

subsets of X is dense.
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13 Urysohn’s Lemma

This section is mostly a placeholder to keep the Big List sections aligned with the Lecture Notes

sections.

?1. Show that the Tietze Extension Theorem implies Urysohn’s Lemma.

??2. Let (X, d) be a metric space, thought of as a topological space with the topology generated

by d. Then we know that X is metrizable and therefore normal. Prove Urysohn’s Lemma

for this space directly, using an associated bounded metric d.
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14 Arbitrary Products

14.1 Problems from the Lecture Notes

This section simply collects together all the exercises mentioned in section 14 of the lecture

notes.

?1. Let I be a nonempty indexing set, and let X be a nonempty set. Let X = {Xα : α ∈ I }
be the indexed family of sets such that Xα = X for all α ∈ I. Show that

∏
α∈I Xα = XI .

?2. Fully convince yourself that the definition of an arbitrary Cartesian product extends the

usual definition of “ordered n-tuples” for finite products.

?3. Let I be a nonempty indexing set, and let X = {Xα : α ∈ I } be a collection of sets such

that Xα = ∅ for at least one α ∈ I. Show that
∏
α∈I Xα = ∅.

?4. Using the identification n = {0, 1, . . . , n − 1} we mentioned above, show that nk = |nk|.
What we mean here is that on the left side is usual exponentiation of natural numbers,

while on the right side we have the size of the set of all functions f : k → n.

This is the most general way to define exponentiation of natural numbers, in the sense

that it generalizes to infinite sets and cardinal numbers.

?5. Fully convince yourself that the definition of projection functions given in Definition 2.8

of the lecture notes on Arbitrary Products extends the definition of projection functions

we already had for finite products.

?6. Justify the use of the word “equivalently” in Definition 4.1, which defines the product

topology on RN.

?7. Show that the functions d1 and d2 defined in Proposition 4.8 are in fact metrics on RN.

?8. Show explicitly that Tprod ⊆ Tunif ⊆ Tbox (as defined on RN).

?9. Show explicitly that both of the ⊆’s in the previous exercise are strict (by exhibiting open

sets).

?10. Show that for an arbitrary product of topological spaces, Tprod ⊆ Tbox, and that this

containment is strict for infinite products.

?11. Show that the property of being Hausdorff is productive.

Hint: Essentially the same proof we did for RN works in general here.

?12. Show that the property of being discrete is finitely productive but not countably produc-

tive. In particular, you can show that any finite product of discrete spaces is discrete, but

that any countable product of nonempty discrete spaces with more than one point is not

discrete.
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??13. Directly show that RN
box is regular.

Hint: Use the alternative definition of regularity (the one involving something like x ∈
V ⊆ V ⊆ U). First show it for x = (0, 0, 0, . . . ) and U = (−1, 1) × (−1, 1) × · · · , then

convince yourself that your proof for this case easily generalizes to all other cases.

??14. Directly show that RN
box and RN

unif are not ccc (and therefore not separable or second

countable).

Hint: There are several ways to do this, but here’s my favourite. Let x ∈ ZN ⊆ RN be

a sequence with all integer values. Find an open set around x that contains no other

sequences with all integer values. Recall (or prove) that ZN is uncountable to finish the

proof.

??15. Directly show that RN
prod is first countable (we know it is since it’s metrizable, but here

you’re going to show it directly).

Hint: First recall from BL 4.4 that the set Fin(N) := {A ⊆ N : A is finite } is countable.

Using the fact that Rusual is first countable, for each a ∈ R fix a countable local basis Ba
at a (in Rusual). Now fix x = (x1, x2, . . . ) ∈ RN. For A ∈ Fin(N), let

Bx,A =

{∏
n∈N

Un : Un ∈ Bxn for all n ∈ A, and Un = R for all n ∈ N \A

}
.

Show that Bx,A is countable for all A ∈ Fin(N), and then that Bx :=
⋃
A∈Fin(N) Bx,A is a

countable local basis at x.

??16. Repeat the proof that RN
prod is metrizable, but using the metric d2.

Warning: This proof is more tedious than the proof using d1. I present both metrics

because I believe students will be more comfortable with a metric defined like d2, but d1

is definitely the easier one to use.

??17. Let {yn}n∈N be a sequence in RN
prod Show that the sequence converges to a point x =

(x1, x2, x3, . . . ) if and only if the “coordinate sequence” {πk(yn)}n∈N in R converges to xk

for all k ∈ N.

??18. Let (X, T ) be a topological space, and let f : X → RN be a function, where RN has the

product topology. Show that f is continuous if and only if πk ◦ f : X → R is continuous

for all k ∈ N.

Note, these two proofs are actually quite easy. I list them here as a two-star problems

because of the notation, which may be tricky for those seeing it for the first time.

??19. Repeat the two proofs above, but in the context of arbitrary products. In other words,

prove Propositions 7.13 and 7.14 from the lecture notes.

Hint: The proofs should be almost identical.
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??20. Fill in the details of the proofs for Proposition 7.10. In particular, show that separability

and metrizability are countably productive.
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14.2 Other problems on products

?1. The purpose of this exercise is to work on your intuition about RN
unif. Recall that the

uniform metric du on RN is defined by

du(x, y) = sup
{
d(xn, yn) : n ∈ N

}
.

In the notes we said that an ε-ball around x in this metric is sort of like a “tube” around

x, but this is not quite true. Fix x ∈ RN and ε > 0, and define a subset:

U(x, ε) =
∏
n∈N

(xn − ε, xn + ε)

= (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× (x3 − ε, x3 + ε)× · · ·

This subset obviously contains x, and should be what you think of when we say “a tube

around x”. However:

(a) Show that U(x, ε) 6= Bε(x) (where Bε(x) is the ε-ball around x according to du).

(b) Show that U(x, ε) is not open in RN
unif.

(c) All is not lost, however. Show that for ε ≤ 1,

Bε(x) =
⋃

0<δ<ε

U(x, δ).

?2. For each of the following sequences in RN, determine whether they converge in RN
box, RN

unif,

and RN
prod.

a1 = (1, 0, 0, 0, 0, . . . ) b1 = (1, 1, 1, 1, 1, . . . )

a2 = (1
2 ,

1
2 , 0, 0, 0, . . . ) b2 = (0, 2, 2, 2, 2, . . . )

a3 = (1
3 ,

1
3 ,

1
3 , 0, 0, . . . ) b3 = (0, 0, 3, 3, 3, . . . )

a4 = (1
4 ,

1
4 ,

1
4 ,

1
4 , 0, . . . ) b4 = (0, 0, 0, 4, 4, . . . )

...
...

c1 = (1, 1, 1, 1, 1, . . . ) d1 = (1, 1, 1, 1, 1, . . . )

c2 = (0, 1
2 ,

1
2 ,

1
2 ,

1
2 , . . . ) d2 = (0, 1, 1, 1, 1, . . . )

c3 = (0, 0, 1
3 ,

1
3 ,

1
3 , . . . ) d3 = (0, 0, 1, 1, 1, . . . )

c4 = (0, 0, 0, 1
4 ,

1
4 , . . . ) d4 = (0, 0, 0, 1, 1, . . . )

...
...
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e1 = (1, 0, 0, 0, 0, . . . ) f1 = (1, 0, 0, 0, 0, . . . )

e2 = (0, 1, 0, 0, 0, . . . ) f2 = (0, 1
2 , 0, 0, 0, . . . )

e3 = (0, 0, 1, 0, 0, . . . ) f3 = (0, 0, 1
3 , 0, 0, . . . )

e4 = (0, 0, 0, 1, 0, . . . ) f4 = (0, 0, 0, 1
4 , 0, . . . )

...
...

?3. For each of the following functions f : R→ RN, determine whether they are continuous or

open when RN has the box, uniform, and product topologies. (One of these may be a bit

trickier than the usual one-star problem.)

f1(t) = (t, t, t, t, t, . . . )

f2(t) = (t, 2t, 3t, 4t, 5t, . . . )

f3(t) = (t, 1
2 t,

1
3 t,

1
4 t,

1
5 t, . . . )

f4(t) = (t, t2, t3, t4, t5, . . . )

f5(t) = (t,
√
t,

3
√
t,

4
√
t,

5
√
t, . . . )

(Assume f5 is defined on [0,∞).)

?4. Recall that we say two sets A and B are of the same cardinality if there exists a bijection

f : A→ B. In this case, we write |A| = |B|.

Let (X, T ) be a topological space. Show that if |I| = |J |, then XI is homeomorphic to

XJ (where both sets have the product topology). Also show with an example that the

converse is not true.

??5. Let R0 ⊆ RN be the collection of all sequences that are eventually constantly zero. (To be

formal, we mean x = (x1, x2, x3, . . . ) ∈ R0 if and only if ∃N ∈ N such that xn = 0 for all

n > N .)

Compute the closure of R0 in the box, uniform, and product topologies on RN.

??6. A sequence x = (x1, x2, x3, . . . ) ∈ RN is called square summable if
∑∞

n=1 x
2
n converges (in

the first year calculus sense). The collection of all square summable sequences in RN is

called `2 (pronounced “little ell two”, to differentiate it from L2 ⊆ RR—the space of all

square integrable functions on R—which is another matter). The function

d(x, y) =

∞∑
n=1

(xn − yn)2

defines a metric on `2 (you do not have to prove this). This metric defines a topology on

`2 in the usual way which we will denote by T`2 . In this problem, we will denote by Tbox,

Tunif and Tprod the subspace topologies `2 inherits from the box, uniform, and product

topologies on RN, respectively.
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(a) Show that Tunif ⊆ T`2 ⊆ Tbox.

(b) Show that R0 (defined in the previous problem) is a subset of `2. Show that the

four topologies R0 inherits from the four topologies on `2 we are considering are all

distinct.

(Note that by previous exercises, you already know that Tprod ⊆ Tunif ⊆ T`2 ⊆ Tbox.)

(c) Let H ⊆ RN be defined by

H =
∏
n∈N

[0, 1
n ].

H is called the Hilbert cube. Show that H ⊆ `2. Having shown this, there are again

four different topologies H can inherit from `2. Determine which of them, if any,

coincide.

??7. In the lecture notes we saw that if I is an uncountable indexing set, then RI with the

product topology is not first countable. We proved this by defining a subset A ⊆ RI and

a point x ∈ A such that no sequence from A converges to x.

In this exercise, give a direct proof that RI is not first countable by fixing an element

f ∈ RI and a countable collection {Un : n ∈ N } of open subsets of the product topology

on RI , each containing f , and finding an open set U containing f such that Un 6⊆ U for

all n ∈ N.

??8. We have already seen that the Hausdorff property is arbitrarily productive. In this exer-

cise, show that the converse is true. That is, let I be a nonempty indexing set and let

X = { (Xα, Tα) : α ∈ I } be a collection of nonempty topological spaces. Suppose their

Cartesian product X :=
∏
α∈I Xα (with the product topology) is Hausdorff. Show that

(Xα, Tα) is Hausdorff for each α ∈ I.

Hint: First, show that each Xα is homeomorphic to a subspace of X in a natural way.

??9. In this and another exercise, we will explore how productive separability is. In the notes we

mentioned that separability somehow cares about the exact size of the product in question.

We have shown already that RN
prod is separable, and more generally that separability is

countably productive.

In this exercise, your task is to show that RR
prod is separable.

Recall that RR is the set of all functions f : R → R. Using the definition of the product

topology, a basic open set in this topology is defined by picking a finite number of points

x1, x2, . . . , xn ∈ R, and an equal finite number of open sets U1, U2, . . . , Un in Rusual, and

considering the set of all functions f : R→ R such that f(xk) ∈ Uk for all k = 1, . . . , n.

Hint: Consider the collection of all step functions with finitely many steps, rational step

heights, and whose steps are all on rational intervals.
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??10. The previous exercise along with the second last one in this section say that uncountable

products of separable spaces can be separable. This may strike you as odd, and that’s

fine; we are getting cloe to Continuum Hypothesis territory here. What might make you

feel a little better is the result of this exercise.

Let I be an uncountable indexing set, and let X = { (Xα, Tα) : α ∈ I } be a collection of

topological spaces, each of which is T1 and contains two or more points. Let X =
∏
α∈I Xα

be their product (with its product topology). You will show that X has a non-separable

subspace. The proof is very similar to the proof that RN
box is not first countable.

Fix a point f ∈ X for the duration of this problem. Define a subset A ⊆ X by:

A := { g ∈ X : g(α) = f(α) for all but countably many α ∈ I } .

You will show that A is not separable with its subspace topology. So fix any countable set

D = {g1, g2, g3, . . . } ⊆ A.

(a) Show that there exists an α ∈ I such that gn(α) = f(α) for all n ∈ N.

(b) Find an open subset U ⊆ X such that gn /∈ U ∩A for all n ∈ N.

(c) Conclude that D is not dense, and the conclude that A is not separable.

??11. This is a very important exercise, in which we are going to define a topology on the power

set of an arbitrary set X. The last two parts, which are probably the most interesting

parts, are going to be somewhat mind-bending. They are not difficult proofs, just tricky

ones to get your head around.

So, let X be an infinite set. Recall that there is a natural bijection between P(X) and

{0, 1}X , via indicator functions. That is, for a subset A ⊆ X, define its indicator function

iA : X → {0, 1} by iA(x) = 1 if and only if x ∈ A.

(a) Show that the mapping φ : P(X)→ {0, 1}X defined by A 7→ iA is a bijection.

(b) This bijection allows us to define a topology on P(X) in the natural way: Say that

A ⊆ P(X) is open if and only if φ(A) ⊆ {0, 1}X is open (where {0, 1}X has the

product topology induced by the discrete topology on all of the factors). Call this

topology T .

Write down a natural-feeling basis for T .

(c) Describe what it means for a sequence {An}n∈N of subsets of N to converge to a

subset A ⊆ N in this topology.

(d) Recall from the section on the Axiom of Choice the definition of a filter and an

ultrafilter. As a warm-up, consider the following fact (which you do not have to

prove, just think about it until you believe it).
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Proposition 14.1. Let U ⊆ P(X) be a filter. Then U is an ultrafilter if and only if

for every A ⊆ X, either A ∈ U or X \A ∈ U .

Now, there are two sorts of ultrafilters.

Definition 14.2. An ultrafilter U on X is called principal, if there is an element

a ∈ X such that U is of the form U = {A ⊆ X : a ∈ A }. Equivalently, an ultrafilter

is principal if and only if it contains a finite set. An ultrafilter that is not a principal

ultrafilter is called non-principal.

(e) Let U be a principal ultrafilter on N. Determine whether U , as a subset of P(N) with

the topology T we defined above, is open, closed or neither.

(f) Do the same but for a non-principal ultrafilter on N.

??12. The earlier exercise about determining whether or not certain sequences converge in the

box topology probably led you to believe that it’s very hard for a sequence to converge

in the box topology. Obviously constant sequences converge, and sequences that basically

“live in” Rn for some n converge, such as the following sequence:

y1 = (1, 1, 0, 0, 0, . . . )

y2 = (1
2 ,

1
2 , 0, 0, 0, . . . )

y3 = (1
3 ,

1
3 , 0, 0, 0, . . . )

y4 = (1
4 ,

1
4 , 0, 0, 0, . . . )

...

This exercise should confirm this intuition, by showing you that almost any interesting

sequence fails to converge in the box topology.

(a) Let {xn}n∈N be a sequence in RN with the property that every xn (thought of as a

sequence in R) has infinitely many nonzero terms. Show that {xn} does not converge

to 0.

Hint: Diagonalize!

(b) Looking back again at the sequences in the earlier exercise, we see that the condition

in the previous part can be improved upon, since the sequence e1, e2, e3, . . . from that

exercise does not converge in the box topology but every element of the sequence has

only one nonzero term.

Try to find a stronger condition than the one in part (a) that guarantees a sequence

in RN
box does not converge to 0. Make sure your condition applies to e1, e2, e3, . . . .

???13. This and the next exercise are difficult because they are notationally intensive, but they

are not very difficult proofs. I will guide you through most of the work.
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In this first exercise, you are going to generalize the fact that RR is separable. Instead of

showing that a product of copies of R indexed by R is separable, you will show that any

product of separable spaces indexed by R is separable.

Let X = { (Xα, Tα) : α ∈ R } be a collection of separable topological spaces. Your goal is

to show that X :=
∏
α∈RXα is separable with its product topology. You will exploit the

fact that R is second countable, and use that fact to define a dense set in a similar way to

how we showed separability is countably productive earlier in the notes.

For each α ∈ R, fix a countable dense subset Dα ⊆ Xα, and fix an enumeration of it:

Dα = {xα1 , xα2 , xα3 , . . . }

Also let B = { (a, b) ⊆ R : a, b ∈ Q } be the usual countable basis for the usual topology

on R.

Let F ⊆ B be a finite set of mutually disjoint intervals with rational endpoints, and let f

be any function f : F → N. (If you prefer, instead of such an f you can just think of a

finite list of natural numbers of the same length as the size of F .)

(a) Show that the set E of all such pairs (F, f) as we have defined them is countable.

(b) For each pair (F, f), define an element g ∈ X by:

gF,f (α) =

xαf(B) α ∈ B for some B ∈ F

xα1 otherwise

Convince yourself that this is a well-defined element of X.

(c) Show that the set D := { gF,f : (F, f) ∈ E } is a countable dense subset of X.

???14. In this exercise you will show that the previous result is almost “strict”, in the sense that

almost any product of separable spaces indexed by sets larger than R is not separable.

Let X = { (Xα, Tα) : α ∈ I } be a collection of separable Hausdorff topological spaces,

each with two or more points. You will show that if X :=
∏
α∈I Xα is separable, then

|I| ≤ |R|, which you will recall means that I has cardinality smaller than or equal to the

cardinality of R, or in other words that there is an injection I → R.

(The contrapositive of this result is that if your indexing set has larger cardinality than

R, then your product is not separable.)

For each α ∈ I, let Uα0 and Uα1 be disjoint, nonempty open subsets of Xα (which we can

find since Xα is Hausdorff and has more than one point). Let D ⊆ X be a countable dense

set. For each α ∈ I, let:

Dα := π−1
α (Uα0 ) ∩D = { f ∈ X : f(α) ∈ Uα0 } ∩D.
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(a) Show that Dα 6= ∅ for each α ∈ I.

(b) Show that if α 6= β, then Dα 6= Dβ. (Hint: This is where Uα1 comes into play.)

(c) By the previous two parts, the map I → P(D) defined by α 7→ Dα is an injection.

Recalling the fact that |R| = |P(N)| finishes the proof. Convince yourself of this.
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15 Urysohn’s metrization theorem

?1. Recall that a topological space (X, T ) is called completely regular if every x ∈ X and

every closed set C ⊆ X not containing x can be separated by a continuous function. This

definition first appeared in section 9 of the Big List. (X, T ) is said to be T3.5 if it is

completely regular and T1.

Examine the proof of Urysohn’s Lemma (Lemma, not metrization theorem) and determine

why we can’t do a similar proof to show that every regular space is completely regular.

??2. Carefully examine the first proof of Urysohn’s metrization theorem from the notes, and

convince yourself that we actually proved this slightly more general fact:

Let X be a T1 topological space. Let I be some indexing set, and suppose there is a family

{ fα : X → [0, 1] : α ∈ I } of continuous functions such that for each a ∈ X and each open

set U containing a, there is an α ∈ I such that fα(a) > 0 and fα(x) = 0 for all x ∈ X \U .

Then the function F : X → [0, 1]I defined by

F (x) = gx : I → [0, 1], where gx(α) = fα(x),

is an embedding of X into [0, 1]I .

??3. Here is the big payoff. This is a powerful embedding theorem (actually a full characteriza-

tion) for completely regular spaces, and one of the reasons completely regular spaces are

so beloved by topologists.

Theorem 15.1. A topological space (X, T ) is T3.5 if and only if it is homeomorphic to a

subspace of [0, 1]I for some indexing set I.

Prove this theorem.
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16 Compactness

16.1 Problems from the lecture notes

?1. Show that every compact space is Lindelöf, and find some examples of Lindelöf spaces that

are not compact.

?2. Show that a discrete topological space is compact if and only if it is finite, and Lindelöf if

and only if it is countable.

?3. Show that ω1 is not Lindelöf.

?4. Show that every compact Hausdorff space is normal.

Hint: Use the fact that every compact Hausdorff space is regular to speed up your proof.

?5. Show that if (X, T ) is Hausdorff and K ⊆ X is compact, then K is closed.

Hint: This proof is almost the same as the proof that every compact Hausdorff space is

regular.

?6. Let (X, T ) be a compact topological space and let f : X → Rusual be a continuous function.

Show that f(X) is bounded.

?7. Prove the Extreme Value Theorem from first year calculus. That is, show that every

continuous function f : [a, b]→ R achieves a minimum and maximum.

??8. Show that ω1 + 1 is compact.

??9. Finish the proof of the general form of the Heine-Borel theorem. That is, prove Theorem

4.7 from the lecture notes.
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16.2 Other problems on compactness

?1. Let (X, T ) be a topological space, and let B be a basis for the topology. Prove that X

is compact if and only if every open cover of X consisting of basic open sets has a finite

subcover.

(Interesting note: You can even replace “basic” with “subbasic”, but this fact is highly

nontrivial; it is called the Alexander Subbase Theorem.)

?2. Show that any finite union of compact subsets of a topological space is compact, and that

an arbitrary intersection of compact subsets of a Hausdorff topological space is compact.

?3. Let (X, d) be a metric space, thought of as a topological space with the metric topology

generated by d. Let C,K ⊆ X be disjoint subsets such that C is closed and K is compact.

Show that d(C,K) > 0, where recall:

d(C,K) = inf { d(c, x) : c ∈ C, x ∈ K } .

?4. Show that every compact metrizable space is second countable. Conclude that every

compact metrizable space is hereditarily separable and hereditarily ccc.

?5. Show that every compact metrizable space is sequentially compact. That is, let (X, T )

be a compact metrizable space, and let {xn}n∈N be a sequence in X. Show that it has a

convergent subsequence.

Hint: First, take care of the case where S = {xn : n ∈ N } is finite. Now assume the

sequence has no convergent subsequences. Show that for each x ∈ S, there is an εx > 0

such that Bεx(x) ∩ S = {x}. Then show that U =
{
Bεx(x) : x ∈ S

}
∪ {X \ S} is a cover

of X with no finite subcover.

??6. Determine which of the following spaces are compact. (This exercises ranges from one- to

two-star difficulty.)

(a) Rco-finite.

(b) Rco-countable.

(c) (R, T7) (the particular point topology at 7).

(d) (R, Tray).

(e) (−∞, α], as subspace of ω1 with its order topology, for any α ∈ ω1.

(f) A subset A ⊆ ω1 with no largest element.

After you have done that, try to characterize the compact subsets of each space.
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??7. In an earlier exercise in this section, you showed that the intersection of compact subsets

of a Hausdorff space is again compact. Give an example to show that Hausdorffness is

necessary in that result. That is, construct a non-Hausdorff topological space (X, T ) with

two compact subsets A and B such that A ∩B is not compact.

You will need to construct a space here, but you don’t have to work too hard. The easiest

way to do it is to start with Ndiscrete and add some points and new open sets containing

those points.

??8. Let (L,≤) be a linear order, thought of as a topological space with its order topology.

Show that L is compact if and only if every nonempty subset of L has a least upper bound

and a greatest lower bound.

Hint: This is very similar to the “creeping along” proof that [0, 1] is compact.

??9. Let (X, T ) be a topological space, let (Y,U) be a compact Hausdorff space, and let f :

X → Y be a function. Show that f is continuous if and only if the graph of f , which is

the set

Γf = { (x, f(x)) ∈ X × Y : x ∈ X }

is closed.

Hint: The (⇐) direction is the tricky one. Prove this intermediary lemma first, then the

result follows:

Lemma. Let (X, T ) be a topological space, and (Y,U) a compact space. Then the first

projection function π1 : X × Y → X is closed.

??10. In this exercise we are going to define a new topological space called the Cantor set that

is one of the most classic (and most counterintuitive) examples in point set topology. You

are strongly encouraged to draw yourself a picture as we go.

Let C0 = [0, 1], with its usual topology. Let C1 be the set obtained by deleting the open

middle third of C1, or in other words let C1 = [0, 1
3 ] ∪ [2

3 , 1]. Let C2 be the set obtained

by deleting the open middle thirds of both of the intervals in C1, or in other words let

C2 = [0, 1
9 ] ∪ [2

9 ,
1
3 ] ∪ [2

3 ,
7
9 ] ∪ [8

9 , 1].

Continue this process inductively, with Cn being the set obtained from Cn−1 by deleting

the open middle third of each of the intervals in Cn−1.

Then the Cantor set C is defined as C :=
⋂
n∈NCn.

Since C is a subset of R it is second countable and metrizable, and therefore also first

countable, T4, separable and ccc.

(a) Show that C 6= ∅.
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(b) Show that C is uncountable.

(c) Show that C is closed, and conclude from this that C is compact.

(d) A subset A of a topological space (X, T ) is called perfect if for every x ∈ A and every

open set U containing x, U contains an element of A other than x, or in other words

(U ∩A) \ {x} 6= ∅. Another way of saying this is that A has no “isolated points”.

Show that C is perfect. (Another example of a perfect set with which you are already

familiar is Q, as a subset of Rusual.)

(e) Show that int(C) = ∅.

(f) Show that the outer measure of C is zero. (If you have not heard of outer measure,

feel free to skip this problem or ask me about it.)

(g) Convince yourself that the Cantor set consists precisely of those elements of [0, 1] that

have a ternary expansion (that is, a “decimal” expansion in base 3) containing no 1s.

(Note that a number can have more than one decimal expansion in base 3, since for

example the real number 1
3—which is in C—has the two expansions 0.1 and 0.0222 . . .

in base 3. So another way to phrase this question is: Show that [0, 1]\C is the collection

of real numbers in [0, 1] all of whose base 3 expansions contain a 1.)

After you have done these exercises, take a moment to think about these results together

and convince yourself that C is weird. It is not unusual to satisfy any one of these properties;

we know lots of uncountable subsets of the reals, lots of compact subsets of the reals, we

know Q is perfect, and we know lots of sets with empty interiors. It is weird that C has

all of these properties simultaneously.

We will explore the Cantor set a little more after we study connectedness.

??11. Let X := {0, 1}N with the product topology induced by the discrete topology in each factor.

Show that X compact directly (ie. without using Tychonoff’s theorem) by showing that

X is homeomorphic to the Cantor set.

Hint: By the last part of the previous exercise, every element a of C can be written as

a =

∞∑
n=1

an
3n
,

for some sequence {an}n∈N of 0s and 2s.

??12. The previous result, that {0, 1}N is homeomorphic to the Cantor set, is a very important

one in topology. The Cantor set C (which from this point onwards we will think of inter-

changeably as both {0, 1}N and as the subset of the reals we constructed earlier) turns out

to contain all the information of a great number of topological spaces. In this exercise we

will explore this a little bit.
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(a) Show that C is homeomorphic to CN (with the product topology). Thinking of C
as {0, 1}N, this proof should be very short, given things you already know about

products.

(b) Prove that [0, 1] (with its usual topology) is a continuous image of C. (That is, show

that there is a continuous surjection f : C → [0, 1].)

Hint: Think of C as a subset of R whose elements are given by sums as in the previous

question, and consider the map:

∞∑
n=1

an
3n
7→

∞∑
n=1

an
2n+1

.

(c) Conclude from the previous two parts that H := [0, 1]N is a continuous image of C.

(d) Let (X, T ) be any compact metrizable topological space. Show that X is homeomor-

phic to a subset of H.

Hint: By a previous exercise in this section, X is separable. Let D = {xn : n ∈ N }
be a countable dense subset of X. Assuming that T is generated by a metric d that

is bounded by 1, let F : X → H be defined by:

F (x) = (d(x, x1), d(x, x2), d(x, x3), . . . ).

First, show that F is continuous (this is easy). By a proposition from the lecture

notes, it then suffices to show that F is injective.

(e) Conclude from the previous parts that every compact metrizable space is a

continuous image of the Cantor set. This is a very powerful result. By now I

hope you are convinced that the Cantor set is very important.

??13. Let (X, T ) and (Y,U) be topological spaces, and let f : X → Y be a closed, surjective,

continuous function with the additional property that for every y ∈ Y , f−1({y}) is a

compact subset of X. Such a map is called a perfect map. As you might expect from the

name, perfect maps are pretty nice.

(a) Show that if X is Hausdorff, then Y is Hausdorff.

(b) Show that if X is second countable, then Y is second countable.

(c) Show that if Y is compact, then X is compact.

(d) Show that perfect maps are “rigid” in the sense that they cannot be extended con-

tinuously to closures: Let X be Hausdorff and f : X → Y be a perfect map. Suppose

Z is a Hausdorff space that contains X as a dense proper subspace. Show that there

is no continuous function F : Z → Y such that F (x) = f(x) for all x ∈ X.

(Hint: Do a proof by contradiction.)

53



??14. Let (X, d) be a metric space which is compact when thought of as a topological space with

its metric topology generated by d, and let f : X → Rusual be a continuous function. Show

that f is uniformly continuous.

??15. This exercise defines a condition on topological spaces that is of particular interest to

algebraic geometers. As you will see, this property is much stronger than compactness.

Definition 16.1. A topological space (X, T ) is called Noetherian if every ascending chain

of open sets stabilizes. That is, if U1 ⊆ U2 ⊆ U3 ⊆ · · · is an ascending sequence of open

sets, then there is an N ∈ N such that Un = Um for all n,m > N .

(a) Show that the property of being Noetherian is hereditary.

(b) Show that every Noetherian space is compact.

Hint: Let (X, T ) be Noetherian and let U be an open cover of X. Consider the

collection A of all finite unions of elements of U . Apply Zorn’s Lemma to A, and

show that the maximal element is X.

(c) Conclude from the previous two exercises that every Noetherian space is hereditarily

compact.

The property of being hereditarily compact is very strong, and can be counterintu-

itive. Every open subset of a hereditarily compact space is compact, for example.

The following exercise should give you some impression of how strong it is.

(d) Show a topological space is Hausdorff and hereditarily compact if and only if it is

finite and discrete.

(e) Show that any Hausdorff Noetherian space is finite and discrete.

???16. This is for the student interested in category theory. These exercises are not particularly

difficult, but they are enough outside the scope of this course (and notationally heavy

enough) that no one should feel obligated to do them. Still, they are pretty cool.

Let { (Xn, Tn) : n ∈ N } be a collection of topological spaces, and assume that for each

n > 1, fn : Xn → Xn−1 is a continuous function. The sequence

X1
f2←− X2

f3←− X3
f4←− · · · ,

is called an inverse system of topological spaces, which we denote by 〈(Xn, Tn), fn〉, or

simply 〈Xn, fn〉 if the topologies on each space are clear. (In general, an inverse system

is defined on a directed set rather than the naturals; we are examining a simpler special

case in this problem.)

In this context, the sequence above is a generalization of a sequence X1 ⊇ X2 ⊇ X3 ⊇ · · ·
of nested spaces (each space would have its subspace topology from the topology on X1,

and the maps would be inclusions).
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We define the inverse limit of this sequence, denoted by lim
←−

Xn, as the set:

lim
←−

Xn :=

{
{xn}n∈N ∈

∏
n∈N

Xn : fn(xn) = xn−1 for all n > 1

}

(which is a topological space with its subspace topology inherited from the product topol-

ogy on
∏
n∈NXn). This is a very powerful way of defining new spaces from old ones.

(a) Prove that if the 〈Xn, fn〉 is a nested sequence, meaning X1 ⊇ X2 ⊇ X3 ⊇ · · · ,
and f : Xn → Xn−1 is the natural inclusion map for every n > 1, then lim

←−
Xn is

homeomorphic to
⋂
n∈NXn (with its subspace topology inherited from T0).

(b) Let (X, T ) be a topological space, and let 〈Xn, fn〉 be the constant inverse system,

where Xn = X and fn = id for all n. Show that lim
←−

Xn ' X

(c) In this part, we use the notation of the initial definitions in this section.

One of the reasons this construction is useful is that inverse limits satisfy the following

universal property.

If (Y,U) is a topological space and gn : Y → Xn is a continuous function with the

property that gn−1 = fn ◦ gn for all n > 1, then there exists a unique continuous

function u : Y → lim
←−

Xn such that gn = πn ◦ u (where πn is the usual projection

function, restricted to lim
←−

Xn ⊆
∏
n∈N

Xn).

Prove this. Then try to interpret this property in the context of specific inverse

systems of topological spaces. For example, in the context of part (a), this says that

A ⊆
⋂
n∈NXn if and only if A ⊆ Xn for all n.

This universal property actually characterizes the inverse limit. A category theorist

would most likely take this as a definition of the inverse limit, then carry out the

construction we did above as a proof that such objects exist and are unique in the

category of topological spaces.

(d) Prove that if 〈Xn, fn〉 is an inverse system of nonempty compact Hausdorff spaces,

then lim
←−

Xn is a nonempty compact Hausdorff space.

(By part (a), this exercise is a significant generalization of the fact that the intersec-

tion of a sequence of nested, closed intervals in R with decreasing lengths is a closed

interval.)

(e) This exercise will show you that compact Hausdorff spaces are much nicer than com-

pact non-Hausorff spaces.

For each n ∈ N, we define a basis Bn on N by the following:

Bn = {{1}, {2}, . . . , {n}, {n+ 1, n+ 2, . . . }}.

It is easy to see that this is a basis. Let Tn be the topology it generates.
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i. Show that (N, Tn) is compact but not Hausdorff for every n.

ii. Show that the identity map id : N → N given by id(x) = x is continuous when

viewed as a map from (N, Tn) to (N, Tn−1) for all n > 2. (This is also very easy.)

iii. The previous exercise shows us that 〈(N, Tn), id〉 is an inverse system. Let

(X, T ) = dslim←−(N, Tn) be its inverse limit. This space is a very simple space

with which you are already familiar. What is it?

iv. Conclude that an inverse limit of compact non-Hausdorff spaces need not be

compact.

(f) If you have two inverse systems 〈Xn, fn〉 and 〈Yn, gn〉, and you have some continuous

functions φn : Xn → Yn for every n, you should expect there to be a way of defining

a continuous function lim
←−

Xn → lim
←−

Yn. It turns out you can do this only if the φn’s

play nicely with the fn’s and gn’s, in the sense that:

φn−1 ◦ fn = gn ◦ φn (1)

for all n > 1. This is confusing to look at, so the correct way to think of it is in terms

of what mathematicians call a diagram, like the following:

· · · fn−1←−−−− Xn−1
fn←−−−− Xn

fn+1←−−−− Xn+1
fn+2←−−−− · · ·yφn−1

yφn yφn+1

· · · gn−1←−−−− Yn−1
gn←−−−− Yn

gn+1←−−−− Yn+1
gn+2←−−−− · · ·

The statement (1) above amounts to saying that this diagram commutes, meaning

that if you start at a point and go to another point along two different paths of

arrows, the resulting compositions of arrows are equal.

So, we say that a function Φ = (φn)n∈N : 〈Xn, fn〉 → 〈Yn, gn〉 is continuous provided

the functions φn are continuous for all n, and that they obey the condition outlined

above. Finally, we define an induced function φ : lim
←−

Xn → lim
←−

Yn by

φ({xn}n∈N) = {φn(xn)}n∈N

Prove that this map φ is well defined, in the sense that it actually maps into lim
←−

Yn.

(g) Prove that if Φ is continuous, then φ is continuous.

(h) If you are still interested in learning more about this, talk to me. There is a lot of

room to generalize these definitions to get very powerful tools. For example, in this

discussion we only mentioned inverse systems indexed by N, when in fact we can

create a similar object indexed by any directed set (recall that definition from my

supplementary notes on nets and filters). This allows us to prove some nice results,

like that every topological spaces is an inverse limit of spaces whose topologies are

finite.
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There are also direct limits, which are like inverse limits except all the arrows go the

other way. Direct limits are generalizations of unions the same way inverse limits are

generalizations of intersections.

While this all looks complicated, inverse and direct limits are a very basic tool for

a lot of higher mathematics. They can be defined in any category, and not just for

topological spaces.

PS: Diagrams are a great way of looking at certain relationships. For example, the universal

property of inverse limits described in part (c) is more readily illustrated by saying that

following diagram commutes for all n > 1.

Y

lim
←−

Xn

Xn Xn−1

u

gn gn−1

πn πn−1

fn
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17 Tychonoff’s theorem and properties related to compactness

17.1 Problems related to Tychonoff’s theorem

?1. A collection A of subsets of a set X is said to have the countable intersection property

(CIP) if for every countable subcollection C ⊆ A,
⋂
C 6= ∅. Note that a collection of sets

with the CIP also has the FIP. Show that a topological space (X, T ) is Lindelöf if and

only if every collection of closed subsets of X with the countable intersection property has

a nonempty intersection.

??2. Let X be a set (which you should imagine being very large). A transitive binary relation

on X is a subset, R ⊆ X2 = X ×X such that if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Note that by this definition, R ∈ P(X2). Let R be the collection of all transitive binary

relations on X, so R ⊆ P(X2).

Thinking of P(X2) as a topological space with the topology defined in BL 14.2.11, show

that R is compact.

Hint: Recall that in defining the topology on P(X2), we identify the set with {0, 1}X2
,

which is compact by Tychonoff’s theorem. Clearly this space is Hausdorff (being a product

of copies of the Hausdorff space {0, 1}), and therefore it suffices to show that R is closed.

You should actually show that its complement is open.

??3. Let X be a set. A linear order ≤ on X is a transitive binary relation on X, and so the set

L ⊆ P(X2) of all linear orders on X is a subset of the set R from the previous problem.

Show that L is compact.

??4. We already know that the Axiom of Choice implies Tychonoff’s theorem, because we used

it (in the form of Zorn’s Lemma) in an important way in the proof. In this exercise, you

will show that Tychonoff’s theorem implies AC.

Assume Tychonoff’s theorem, and let A = {Aα : α ∈ I } be a nonempty collection of

nonempty sets. We want to show that there is a choice function on A.

(a) Show that there is a choice function on A if and only if
∏
α∈I Aα 6= ∅. (This is an

exercise you did back when we discussed AC, but remind yourself of it here.)

(b) Let ♥ be a symbol that that is not in any of the Aα’s. For each α ∈ I, we are going

to define a topology on Aα ∪ {♥}. Let Tα be:

Tα = {U ∈ P(Aα ∪ {♥}) : U = ∅, U = {♥} or (Aα ∪ {♥}) \ U is finite } .

That is, Tα is the co-finite topology on Aα ∪{♥}, with {♥} also declared to be open.

Convince yourself that this is a topology on Aα ∪ {♥}.

(c) Prove that (Aα ∪ {♥}, Tα) is a compact topological space for each α ∈ I. Then by

Tychonoff’s theorem, X :=
∏
α∈I(Aα ∪ {♥}) is compact with its product topology.
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(d) Let C be the following collection of subsets of X:

C =
{
π−1
α (Aα) : α ∈ I

}
.

Verify that each set in C is a closed subset of X.

(e) This is the part where this business with ♥ helps us. Show that C has the finite

intersection property.

Hint: Let C1, . . . , Cn be elements of C. Then for each i there is an αi ∈ I such that

Ci = π−1
αi (Aαi). We know that each Ci is nonempty (since the projection maps are

all surjective) and since we are only looking at finitely many nonempty sets, we can

use finite choice to pick an element bi ∈ Aαi for each i = 1, . . . , n. Define an element

f ∈ X by:

f(α) =

bi α = βi for some i = 1, . . . , n

♥ otherwise

Show that f ∈ C1 ∩ · · · ∩ Cn.

Morally, in this proof we are trying to choose an element from each Aα. We cannot

do that without AC, but we can definitely pick the element ♥ from each Aα ∪ {♥}.
We put ♥ into each of those sets precisely so we can pick it here when necessary,

leaving us with only finitely many “non-obvious” choices to make.

(f) Conclude from the previous part that
⋂
C 6= ∅. Finally, conclude from this that∏

α∈I Aα 6= ∅.

???5. In this exercise you are going to produce another proof of Tychonoff’s theorem, this time

using the Well-Ordering Principle rather than Zorn’s Lemma (which you should recall

was used in the proof given in the lecture notes to extend a filter to an ultrafilter). This

exercise will involve transfinite induction. This is much closer to (but not the same as)

the original proof of Tychonoff’s theorem.

(a) Let (X, T ) and (Y,U) be topological spaces with X compact, and let B be the usual

basis for the product topology on X×Y . Let A ⊆ B be a collection of basic open sets

with the property that no finite subcollection of A covers X × Y . Show that there is

an x ∈ X such that no finite subcollection of A covers {x} × Y .

(This is very similar, and follows from, Lemma 5.2 in the notes on compactness.)

(b) Now, for remainder of the problem, let I be a nonempty indexing set and let X =

{ (Xα, Tα) : α ∈ I } be a collection of compact topological spaces. Let X =
∏
α∈I Xα

be their product, which we want to show is compact with its product topology. Let

B be the usual basis for the product topology. Also, fix a well-ordering ≤ of I with

the property that (I,≤) has a largest element (this is no loss of generality, since you
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can fix any well-order, then take the least element and “move it to the top” of the

order).

The proof proceeds by induction (transfinite induction, in general) on this well-order.

Fix β ∈ I, and for each γ < β, fix some pγ ∈ Xγ . For each α < β, define the subset

Yα ⊆ X by:

Yα = {x ∈ X : πγ(x) = pγ for all γ ≤ α } .

Note that these sets are nested, in the sense that if α1 < α2, then Yα1 ⊇ Yα2 . Finally,

let Zβ =
⋂
α<β Yα.

Show that if A ⊆ B is a finite collection of basic open sets that covers Zβ, then A
also covers Yα for some α < β.

Hint: Recall that in a well-order, an element β either has an immediate predecessor

in the order or it does not. The first case is basically immediate. For the other case,

for each U ∈ A let IU ⊆ I be the set

IU = {α < β : πα(U) 6= Xα } .

By definition of the product topology,
⋃
U∈A IU is finite. Choose α = max

⋃
U∈A IU .

(c) Now, we prove that X is compact by contrapositive. So let U ⊆ B be a collection of

basic open sets such that no finite subcollection of U covers X, and we’ll show that

U is not a cover of X.

Show by transfinite induction that one can choose points pα ∈ Xα for all α ∈ I such

that for each β ∈ I, the set Yβ (as defined earlier, with this new choice of pα’s used

for all of them) cannot be covered by a finite subcollection of U .

Hint: Base case: If β = min I, Then we can regard X as Xβ ×
∏
β<α∈I Xα, and find

the point pβ using the result of part (a).

Suppose now that we have found the pα’s that work for all α < β, and we attempt to

find pβ. By the contrapositive of part (b) you can conclude that no finite subcollection

of U covers Zβ. Then show that you can use part (a) to find pβ.

(d) Conclude from the previous part that if β = max I (which exists by assumption),

then the element f ∈ X defined by f(α) = pα is an element of X that is not covered

by any finite subcollection from U . Show that this implies U is not a cover.

This proof provides us with an interesting way to look at Tychonoff’s theorem. We already

know that AC, Tychonoff’s theorem, and the Well-Ordering Principle are all equivalent,

and this proof allows us to conclude that any product of compact sets indexed by a set

that can be well-ordered is compact. This means that that in a world without AC, many

large products of compact sets are still compact. For example any product of compact sets

indexed by any ordinal is compact.
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17.2 Problems on properties related to compactness

None of this material will be tested in this class, but I include it for some flavour. It is interesting

that all of these notions collapse to the same thing in a metric space.

Recall the following properties related to compactness that we defined in the lecture notes:

1. Compactness;

2. Sequential compactness;

3. Countable compactness;

4. Limit point compactness.

We also proved (or at least stated) the following relationships between them:

• Compact ⇒ countably compact.

• Countably compact ⇔ every infinite subset has an ω-accumulation point.

• Sequentially compact ⇒ countably compact.

• First countable + countably compact ⇒ sequentially compact.

• Compact 6⇒ sequentially compact (the example I mentioned, without a complete proof,

was [0, 1][0,1]).

• Sequentially compact 6⇒ compact (the example I mentioned was ω1, which is even first

countable).

• Second countable ⇒ (compact ⇔ countably compact).

• First countable + T1 + limit point compact ⇒ sequentially compact.

The main result of this section is to prove that in a metric space, all four properties listed

above, along with the property of being complete and totally bounded (which we call property

5), are equivalent. This is a two-star series of exercises.

So let (X, d) be a metric space, thought of as a topological space with its metric topology

generated by d. (We have to fix a particular metric here, since property 5 depends on the

exact metric we use). Recall that a metrizable space is Hausdorff (and therefore T1), and first

countable. Note also that the property that every infinite set has an ω-accumulation point is

much stronger than the property of being limit point compact.

Our proof will take the following form:

(1)⇒ (2)⇒ (3)⇒ (4)⇒ (1)

and then we will separately prove that (5) is equivalent to these.

Note that we already know (2)⇒ (3) and (3)⇒ (4) from our list of results above.

1. Prove that (1)⇒ (2). This is almost entirely done by the results above.
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2. This is an intermediate fact. Suppose X is limit point compact. Let U = {Uα : α ∈ I } be

a given open cover of X. Show that there is an ε > 0 such that for all x ∈ X, Bε(x) ⊆ Uα
for some α ∈ I.

Hint: Suppose there is no such ε > 0. Then for each n ∈ N we can find a point xn ∈ X
such that B 1

n
(xn) is not a subset of any element of U .

(a) Show that A := {xn : n ∈ N } is infinite.

(b) Since X is limit point compact, let a be a limit point of A. Then a ∈ U for some

U ∈ U , and therefore there is an ε > 0 such that Bε(a) ⊆ U . Derive a contradiction

from here.

3. Prove that (4)⇒ (1).

Hint: Use the previous part.

4. We now prove that (5)⇔ (2).

(⇐). Suppose (X, d) is sequentially compact (and therefore compact).

(a) Prove that X is totally bounded.

(b) To show that the space is complete, note that every Cauchy sequence in X has a

convergent subsequence, since X is sequentially compact. Use this to show that the

whole sequence converges.

(⇒). Suppose (X, d) is complete and totally bounded, and let {xn}n∈N be a sequence in

X. We want to show that it has a convergent subsequence, and by completeness it suffices

to show it has a Cauchy subsequence. This is a sort of diagonalization argument.

(a) Suppose U1 is a cover of X by finitely many metric balls of radius 1 (which we can

find since X is totally bounded). Show that there is a ball B1 ∈ U1 that contains

infinitely many members of the sequence. Call the corresponding set of indices A1.

(ie. A1 = {n ∈ N : xn ∈ B1 }).

(b) Suppose U2 is a cover of X by finitely many metric balls of radius 1
2 . Show that there

is a ball B2 ∈ U2 and an infinite subset A2 ⊆ A1 such that xn ∈ B2 for all n ∈ A2.

(c) Proceeding inductively, we construct a collection of open balls Bn of radius 1
n for

each n, and a sequence of infinite subsets of N A1 ⊇ A2 ⊇ A3 ⊇ · · · such that

Ak = { k ∈ N : k ∈ Bk }. Convince yourself we can do this.

(d) Show that we can inductively choose numbers nk ∈ Ak such that

n1 < n2 < n3 < · · · .

(e) Show that the subsequence {xnk}k∈N of our original sequence is Cauchy.
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18 Connectedness

?1. Prove Proposition 2.2 from the lecture notes (which provides a number of equivalent defi-

nitions of disconnectedness).

?2. Let X be a set, and let T1 and T2 be topologies on X such that T1 ⊆ T2. Does the

connectedness of either one of them imply the connectedness of the other?

?3. LetD ⊆ R2 be countable. Show that R2\D is connected (with its usual subspace topology).

Hint: Show it is path-connected.

?4. Let (W,≤) be a well-order, thought of as a topological space with its order topology.

Provided that W has more than one point, show that it is disconnected.

?5. Let (X, T ) be a topological space, and let D ⊆ X be a connected subset. Show that D is

connected.

In particular, this implies that a topological space with a dense connected subspace is

connected.

?6. Let (X, T ) be a topological space, and let {An : n ∈ N } be connected subsets of X with

the property that An ∩An+1 6= ∅ for all n ∈ N. Show that
⋃
n∈NAn is connected.

?7. Show that RN
box is disconnected. What about RN

unif?

Hint: For the first question, consider the set of sequences of real numbers that converge

to zero in the usual topology, as a subset of RN.

?8. Show that path-connectedness is (arbitrarily) productive.

?9. Fill in the details of the proof that the Topologist’s Sine Curve is connected but not

path-connected.

?10. This is a definition we will return to a few times throughout these exercises:

Definition 18.1. A topological space (X, T ) is called totally disconnected if its only con-

nected subsets are singletons.

(a) Show that total disconnectedness is a topological invariant.

(b) Show that a topological space (X, T ) is totally disconnected if for every pair of distinct

points a, b ∈ X there are disjoint open sets U, V such that a ∈ U , b ∈ V and

X = U t V .

(c) Show that total disconnectedness is hereditary.

(d) Show that total disconnectedness is (arbitrarily) productive.
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(e) Intuitively, total disconnectedness feels a lot like discreteness. Show that any discrete

space is totally disconnected, and come up with an example of a non-discrete space

that is totally disconnected. (For the latter, you know a few spaces already that

satisfy this.)

(f) Show that any zero-dimensional T0 space is totally disconnected. (Recall that a

topological space is called zero-dimensional if it admits a basis consisting of clopen

sets.)

?11. Here is another useful definition.

Definition 18.2. A topological space (X, T ) is called locally connected if for every x ∈ X
and every open set U containing x, there is an open, connected set V such that x ∈ V ⊆ U .

Equivalently, (X, T ) is locally connected if it admits a basis of connected sets.

(a) Show that there is no implication relationship between connectedness and local con-

nectedness. In fact, find four topological spaces which are respectively:

i. Not connected or locally connected.

ii. Connected but not locally connected. (This is the tricky one, but you have

already seen the example in the lecture notes.)

iii. Locally connected but not connected.

iv. Connected and locally connected.

(b) Show that every discrete space is locally connected.

(c) Show (with as trivial an example as possible) that a continuous image of a locally

connected space need not be locally connected.

(d) Show that local connectedness is a topological invariant.

Can you relax this at all? That is, you just showed that if X is locally connected and

f : X → Y is a homeomorphism, then Y is locally connected. Examine your proof,

and see if a weaker function f will also work. You know from the previous part that

a continuous surjection is not good enough.

(e) Show with an example that local connectedness is not hereditary (one of your exam-

ples from the first part should work).

(f) Give an example of a space that is locally connected but not totally disconnected

(this is easy), and a space that is totally disconnected but not locally connected (this

is slightly less easy).

(g) Show that a totally disconnected, locally connected topological space must be discrete.

?12. Recall from some time ago that if (X, T ) is a connected topological space, a point p ∈ X
is called a cut point if X \ {p} is disconnected.
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(a) Prove that homeomorphisms send cut points to cut points.

(b) For n ∈ N, prove that the property of having n cut points is a topological invariant.

(c) Does Rco-finite have any cut points? What about Rco-countable? What about the

Topologist’s Sine Curve?

(d) Consider the English capital letters X, P, Y, B, and O, and imagine them as subspaces

of R2
usual. Are any of them homeomorphic to one another?

??13. Prove the direction of Theorem 2.6 that we left out. That is, prove that a connected

linear order (L,≤), thought of as a topological space with its order topology, is Dedekind

complete and has no gaps.

Hint: Prove the contrapositive (which will involve two cases).

??14. Prove that connectedness is productive.

Hint: A similar idea to the proof that connectedness is finitely productive will work, but

there’s much more bookkeepping to do:

Let X =
∏
α∈I Xα be a product of connected spaces. Fix an element f ∈ X, and let

Df = { g ∈ X : g(α) = f(α) for all but finitely many α ∈ I } .

Show that Df is dense in X and connected, and then use an earlier exercise to conclude

that X is connected.

??15. Show that the Cantor set is totally disconnected. Note that by the result of an exercise in

section 16, this implies that a continuous image of a totally disconnected space need not

be totally disconnected, since any compact metrizable space is a continuous image of the

Cantor set.

??16. In this exercise, you will show that any compact, Hausdorff, totally disconnected space is

zero-dimensional. (This may not seem so exciting, but it will lead somewhere exciting.)

Let (X, T ) be a compact, Hausdorff, totally disconnected topological space. The proof

proceeds by constructing a local basis of clopen sets around each point in the space (the

union of all of these is then a basis of clopen sets for the topology). Before we begin, recall

that any compact Hausdorff space is normal.

Fix a point x ∈ X. Let C = {A ⊆ X : x ∈ A, and A is clopen }. Then X ∈ C, so C 6= ∅.

(a) Show that C is closed under finite intersections, and that P :=
⋂
C is a closed set

that contains x.

(b) Show that for every closed set F that is disjoint from P , there is a C ∈ C such that

F ∩ C = ∅.
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Hint: Suppose not, fixing a closed set F which is disjoint from P , and which intersects

every member of C. Show that A = {C ∩ F : C ∈ C } is a collection of closed sets

with the finite intersection property, and use the FIP definition of compactness to

derive a contradiction.

(c) Show that P = {x}.
Hint: Suppose not. Then P has more than one point, and is therefore disconnected

(as a subspace) since X is totally disconnected. Fix A and B, nonempty open subsets

of the space P , such that P = AtB, and such that x ∈ A. Then A and B are closed

in X (since P is a closed subspace), and so since X is normal we can find disjoint open

sets U and V containing A and B respectively. Then F := X \ (U ∪ V ) is a closed

set that does not intersect P . Apply the previous part, and derive a contradiction.

(d) Conclude that C is a local basis at x.

??17. In this exercise, you are going to prove a powerful characterization theorem about compact,

Hausdorff, totally disconnected spaces.

Suppose (X, T ) is a compact, Hausdorff, totally disconnected space. By the previous

exercise, the space admits a basis B = {Bα : α ∈ I } of clopen sets. You are going to

show that X is homeomorphic to a subspace of {0, 1}I .

Recall that for a subset A ⊆ X, the corresponding indicator function χA : X → {0, 1} is

the function

χA(x) =

1 x ∈ A

0 x /∈ A

Define a map φ : X → {0, 1}I by φ(x)(α) = χBα(x). Understanding this map will likely

take you a minute, so stare at it for a bit. Remember that elements of {0, 1}I are functions

I → {0, 1}, so φ(x) is defined by how it acts on each α ∈ I. The way φ acts is by sending

x to what is essentially a checklist of what elements of B contain x.

(a) Show that φ is injective. This is just unravelling of definitions, though it will be

important to remember that in a T1 space like X, a point x is equal to the intersection

of all basic open sets that contain it.

(b) Prove that for each B ∈ B, χB is continuous.

(c) Prove that φ is continuous. I suggest doing this by showing that the preimages of

subbasic open sets in {0, 1}I are open, using the previous part.

(d) Conclude that φ is a homeomorphism onto its range, which establishes the result.

I hope you are now getting a good feeling for the usefulness of embedding spaces into large

products.
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??18. Let (X, T ) be a topological space, and let Y be any set. A function f : X → Y is called

locally constant if for every x ∈ X, there is an open set Ux ⊆ X containing x such that

f is constant on Ux. Prove that a locally constant function with a connected domain is

constant.

???19. This is a problem about vector bundles. This problem is not very difficult at all, but it

is (a) notationally intensive, and (b) somewhat outside the scope of this course. I put

it here with three stars for interested students, just so no one feels they have to do this.

The biggest challenge with this problem will likely be wrapping your mind around the

definition of a vector bundle.

Let (X, T ) be a topological space. Let (E,U , π) be a triple such that:

(i) (E,U) is a topological space;

(ii) π : E → X is a continuous surjection; and

(iii) for each x ∈ X, the preimage π−1(x) has the structure of a finitel-dimensional real

vector space.

The preimages π−1(x) are called fibres. In the context of the rest of this problem, you

should think of E as a “bundle” of these fibres. (A vector bundle is a particular case of a

more general object called a fibre bundle.)

Such a triple is called a vector bundle on (X, T ) if:

For every x ∈ X there is an open set Ux ⊆ X containing x, a non-negative integer nx, and

a homeomorphism

ϕx : π−1(Ux)→ Ux × Rnx

(where Rnx has its usual topology) such that the following two properties are satisfied:

(a) The following diagram commutes:

π−1(Ux) Ux × Rnx

Ux

ϕx

π�π−1(Ux)

ψx

where ψx : Ux × Rnx → Ux is the first projection function: ψx(y, v) = y. (Usually

I would call this function π1, but π is always used for the other map in a vector

bundle.) To remind you, the diagram above is said to commute if

ψx ◦ ϕx = π �π−1(Ux) .
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(b) For each y ∈ Ux, the map:

ϕx �π−1(y): π
−1(y)→ ψ−1

x (y)

is an isomorphism of vector spaces.

To make sense of this, note that by definition of ψx, ψ−1
x (y) = {y} × Rnx , which we

regard as a vector space by simply ignoring the constant first coordinate. Also by

hypothesis we know that π−1(y) has the structure of a finite-dimensional real vector

space.

Some intuition for these definitions. First of all, these definitions are usually written

without the subscript x on everything. I wanted to include them to stress that all of these

things depend on the particular x.

Next, observe that given a fixed integer (we’ll use 7), the set E = X×R7, with its product

topology and the map π : E → X given by π(x, y) = x, is trivially a vector bundle because

you can choose Ux = x, nx = 7 and ϕx = id for all x ∈ X. This is called the trivial vector

bundle of rank 7 over (X, T ).

In general, the map ϕx is often called a “local trivialization”. So the idea here is that E

is a big bundle of vector spaces, one sitting “over” every point in X. The existence of Ux

and the map ϕx shows that near x, the map π looks like a simple projection Ux×Rn → Ux

for some n, and in turn that near x, this collection of vector spaces over points looks like

a trivial vector bundle of some fixed rank nx.

One example of a vector bundle you may have seen is the tangent bundle of a smooth

manifold. In this case, the topological space (X, T ) is a smooth manifold M , the fiber over

a point x ∈M is its tangent space, and E is the disjoint union of these tangent spaces with

the disjoint union topology on it. A vector field on M is an assignment to each x ∈M of

a vector in its tangent space (in general this sort of assignment is called a section of the

bundle), and so on.

The special case in which every fibre has dimension 1 is called a line bundle. Consider

S1 with its usual topology. Then there are two line bundles over S1: the trivial bundle

S1 × R, which you can easily visualize as a cylinder, and one non-trivial one. This non-

trivial vector bundle is called the M obius bundle, and is the most natural mathematical

description of a M obius strip. It’s probably the simplest concrete example of a non-trivial

vector bundle.

Okay, so what’s the actual problem? Let (X, T ) be a connected topological space, and let

(E,U , π) be a vector bundle on (X, T ). Show that there is a single non-negative integer n

such that

dim
(
π−1(x)

)
= n

for all x ∈ X (where we mean vector space dimension there).
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19 Compactifications

?1. Prove that local compactness is a topological invariant.

?2. Prove that a locally compact Hausdorff space is regular.

?3. Show that any open or closed subspace of a locally compact Hausdorff space is locally

compact.

Hint: For the open part, use the previous exercise.

?4. Show that local compactness is finitely productive.

?5. Generalizing the previous exercise, show that if X = { (Xα, Tα) : α ∈ I } is a collection of

topological spaces, then X =
∏
α∈I Xα is locally compact if and only if each (Xα, Tα) is

locally compact and all but finitely many of them are compact.

?6. Describe (geometrically, if possible) the one point compactifications of the following topo-

logical spaces.

(a) R2 \ {one point}, as a subspace of R2
usual.

(b) R2 \ {finitely many points}, as a subspace of R2
usual.

(c) Countably many mutually disjoint open balls in R2
usual. (Far apart, like balls of radius

1
2 centred at integer points on the x-axis.)

(d) The set R2, with its order topology induced by the lexicographical order.

(e) Rdiscrete.

(f) The space L given in Example 5.3.4 of the lecture notes on Connectedness.

??7. (These are mostly one-star questions.) Determine whether the following topological spaces

are locally compact.

(a) RN
box

(b) [0, 1]N with its box topology.

(c) RN
prod

(d) [0, 1]N with its product topology.

(e) (R, T7).

(f) Rray.

(g) The set of irrational numbers, as a subspace of Rusual.

(h)
{

(x, y) ∈ R2 : y > 0
}
∪ {(0, 0)}, as a subspace of R2

usual.

(i) Rco-countable

69



??8. Prove that RSorgenfrey is not locally compact.

Hint: First show that every compact subset of RSorgenfrey is countable, and then the result

about local compactness follows easily.

??9. In this exercise you are going to prove Proposition 6.1 from the lecture notes on compact-

ifications, about the Stone-Čech compactification of (N, Tdiscrete). Recall that we define

βN to be the set of all ultrafilters on N, and give it the topology generated by the basis

B = {BA : A ⊆ N }, where

BA := {U ∈ βN : A ∈ U } .

Define i : N→ βN by i(n) = Un, where Un = {A ⊆ N : n ∈ A } is the principal ultrafilter

at n. You will show that βN along with the map i forms the Stone-Čech compactification

of the naturals.

(a) First, prove the following elementary facts about the basic open sets in B. All of

these proofs should be at most one or two lines, and should follow easily from the

properties of ultrafilters you already know.

i. B∅ = ∅.
ii. If A1 ⊆ A2, then BA1 ⊆ BA2 .

iii. For all A1, A2 ⊆ N, we have BA1 ∪ BA2 = BA1∪A2 and BA1 ∩ BA2 = BA1∩A2 .

iv. For all A ⊆ N, we have BN\A = βN \ BA. (In particular, every basic open set is

closed.)

v. If A1 6= A2, then BA1 6= BA2 .

(b) Prove that B is actually a basis on βN.

(c) Having now described the topology on βN, prove that this space is actually the Stone-

Čech compactification of N. To do this you must show the following:

i. i : N→ βN is an embedding.

ii. i(N) is a dense subset of βN.

iii. βN is a compact Hausdorff space.

iv. βN has the universal property that characterizes the Stone-Čech compactifica-

tion.

Here are some hints for each part.

i. First show that i is injective. Then show that i(N) is a discrete subspace of βN.

It follows almost immediately that i is continuous and open.

ii. Show that every nonempty basic open set in B contains a principal ultrafilter.

This is pretty straightforward.
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iii. For Hausdorffness: Suppose U 6= V ∈ βN. Then there must be some A ⊆ N such

that A ∈ U but A /∈ V. But then N \A ∈ V since V is an ultrafilter. Finish from

here.

For compactness, use the characterization that a space is compact if every family

of closed sets with the finite intersection property has a nonempty intersection.

Note that it suffices to use “basic closed sets”, which are complements of basic

open sets. By (iv) in part (a), these basic closed sets are themselves basic open

sets. So let C = {BAα : α ∈ I } be some collection of basic clopen sets with the

FIP. Show that this implies that {Aα : α ∈ I } ⊆ P(N) has the FIP. Use this

collection to generate a filter on N, and finish the proof from there.

iv. Fix an embedding f : N → Z, where Z is a compact Hausdorff space. We want

to show that there is a unique continuous function βf : βN → Z such that

f = βf ◦ i.
For U ∈ βN, recall from the lecture notes on the proof of Tychonoff’s theorem

that the collection

f∗(U) :=
{
B ⊆ Z : f−1(B) ∈ U

}
is an ultrafilter on Z. Since Z is compact and Hausdorff, f∗(U) converges to

a unique point, which we will call zU . Define βf : βN → Z by βf(U) = zU .

Convince yourself that this map is well-defined, and satisfies the relationship

f = βf ◦ i.
Then prove that βf is continuous. This is a bit tedious, but straightforward. You

will need to note at some point that Z is regular, and you will need the definition

of filter convergence.
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