MAT327 - Lecture 7

Wednesday, May 29th, 2019

Recall that a sequence {z, },en converges to a point z € X if for all open sets U
containing x, there exists an N € N such that for all n > N, z, € U.

Recall also that:
Ty (Hausdorff) = Ty = T)

Exercise: Prove that R, finite is 77 but not T5. Also prove that R,,, is T but not 7;.

Recall also that theorem that in a Hausdorff space, every sequence converges to at
most one point. The converse was not true. In Reo.countable, Only the eventually
constant sequences converge. Since this space is 71, we know that the limits of all
convergent sequences are unique. But the space is not Hausdorff.

The main question of this lecture, how do we fix this? There are two ways. One is to
use something stronger than sequences, which Ivan talks about in his notes on Nets
and Filters. The other way to fix this is to impose some additional condition on our
space that magically makes sequences powerful enough to reverse this implication.

We'll explore the latter one in this lecture.

Correction from last class: We said that in R., gnite, if & sequence has an infinite
range, it converges to all points. this is wrong by the counterexample:

a, =0,1,0,2,0,3,0,4, ...

This converges to 0 only. (check this.)

Let (X, T) be a topological space and let A C X. Let {a,}nen be a sequence in
A. If a,, — a for some a € X, then a € A.

Proof. Every open set U around a contains points of a,, but a, € A for each n € N,
so in particular U N A # (). [

The converse is again false.

So sequences do not characterize every property of topological spaces. The direction
we’ll go now is to find out what property of topological spaces is stopping us, and
isolate it.



Definition : Local Basis

Let (X, 7T) be a topological space and let z € X. A local basis at x is a collection
of sets B, C T with the following properties:

1. z € Bforall Be B,

2. For all open sets U containing x, there exists some B € B, such that
reBCU.
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Example : Local Bases
Fix a point x € R gual,
1. then the set {(a,b) : a < b € R} is a local basis for z.

2. The set {(a,b) : a < b € Q} is a local basis at .

1 1
3. The set: {(x ——,z+ —) 'n € N} is a local basis at .
n n

4. In Rgorgentrey, the set:
{lz,z+1/n) : n € N}

is a local basis at z.

5. In Xgiscrete; Bz = {{x}} is a local basis at z.

6. In X, the set {{p}} is a local basis at p, and the set {{z, p}} is local basis
at a point = for any x # p.

Definition : First Countable

A topological space (X,7) is said to be first-countable if every point has a
countable local basis.



Example : First Countable

nual> RSorgenfrey, Xdiscrete; Xp, are all first countable.

Reo-finites Reo-countable are not first countable.

Note that every basis for a topological space admits a local basis around every point
in the space.

That is, given a second-countable space (X, Tx) witnessed by a countable basis B,
given some = € X we can define:

B,={BeB:B>ux}

This shows that second countability implies first countability. An example of a space
that is first countable but not second countable is Rgorgenfrey-

Think about what condition each basis for Rggrgenfrey Needs to satisfy. This condition
looks something like “For every real number z...” Think about why this condition
prevents any basis from being countable.

This is yet another example of Rgorgentrey and Ryguar being worlds different despite
looking so similar.

If (X,7T) is first countable, then every point has a countable nested local basis.
That is, B, = {B,} : n € N is a local basis and B,, O By, for each n € N.

This theorem is used to prove the next two. The idea is that for each n € N, take the
basis element B, in our original basis, and let B], = (_, B,.

Now, the payoffs:

Let (X, T) be a first countable topological space and let A C X, and let a € A.
Then a € A is and only if there is a sequence in A converging to a.

Proof. (<) Suppose that a,, — a for some sequence a,, where a,, € A for each n € N.
Let U be an open set containing a, for which U contains a tail of the sequence. But
this tail of the sequence is in A, so U N A # ().

(=) Let a € A. Fix a countable, nested, local basis for a, call it B,. As a € A and
each B, € B, is open, we have that B,, N A # () for all n € N. So for each n € N,
take a,, to be in this intersection.

Let U be any open set containing a, for which there exists some N € N such that
B,, CU for all n > N (since the basis is nested).
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But then x,, € U for all n > N, so U contains a tail of the sequence. Therefore the
sequence converges to a. |

Let (X,7T) be a first countable topological space such that every sequence con-
verges to at most one point a € X. Then (X, 7) is Hausdorff.

Proof. We will proceed by contrapositive. Suppose that (X, 7) is first countable and
not Hausdorff. Then there exists some x # y € X such that for all open U and V'
containing x and y respectively, we have that U NV # ().

By the fact that (X, T) is first countable there exists a countable nested local basis at
both x and y, call them

B, ={B, :n €N} and B, = {B,, : m € N}.

Construct the sequence by picking x1 € By N By, pick 2o € Bya N By, and continuing

in this manner. None of these intersections are empty by assumption, so our sequence
is well-defined. This sequence converges to both = and y, which is impossible.
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First countability allows us to reverse both of these theorems we mentioned earlier.

Continuous Functions

We have topological spaces, and we have topological properties. We are now
interested in investigating how these properties change between spaces.

Definition : Continuous Functions

Let (X, 7T.), (Y, Ty) be topological spaces and let f : X — Y be a function. We
say that f is continuous if f~1(U) € Tx for all U € Ty



More concisely, we say that f is continuous if the preimage of open sets is open.

Example : Continuous Functions

1. Let f : R — R be continuous in the € — § sense. Then f : Rysuar — Rusual
is continuous in the topological sense.

2. Fix some a € R". Let f : R ., = Rusa be given by f(z) = ||z — a|.
Then f is continuous.

3. The first projection function m : R2_ | — Ry given by m(z,y) = x is
continuous.

4. Any function whose domain is a discrete space is continuous. This is a
simple consequence of the fact that the preimage of any set whatsoever is
open, so the preimage of open sets is definitely open.

5. Similarly, any function whose co-domain is indiscrete is continuous.
6. Any constant function is continuous.
7. The compositions of continuous functions are continuous.

8. For any set X, the identity function I : (X,7;) — (X, 72) is continuous if
and only if 77 refines 7s.

Proof. (1) Fix some U € Ryga1, we want to show that f~!(U) is open in Rygyal-

Pick some x € f~1(U). Then f(x) € U. Then there exists some ¢ > 0 such that

(f(x) —€, f(x) +¢€) CU. But by definition there exists a § > 0 such that if

y € (xr—06,x+90), then f(y) € (f(x) — €, f(x) + €). But this means that

(x—d,2+06) C fHU). O

Let (X, Tx) and (Y, Ty) be topological spaces and let B be a basis on Y that
genereates Ty. Let S be a sub-basis on Y that also generates Ty
Let f: X — Y then the following are equivalent:

1. f is continuous.

2. For every B € B, f~'(B) € Tx.

3. For every S € S, f71(9) € Tx.

. J

The proofs here follow from the fact that preimages play nicely with unions and
intersections. Here we can prove a function mapping to R g1 is continuous just by



proving it for open intervals, or even for rays (which form a sub-basis).

Definition : Continuity at a Point

Let (X, Tx) and (Y, Ty) be topological spaces. Let f : X — Y be a function and
let x € X. We say that f is continuous at z if for all open sets V' € Ty containing
f(z), there exists an open set U € Tx containing x such that f(U) C V.

The following are equivalent:
1. f is continuous.
2. The preimages of closed sets are closed.

3. f is continuous at z for all x € X.

4. For all AC X, f(A) C f(A).

Proving that the first 3 are equivalent is very easy. I'll do the proof that 1 = 4.
Proof. (=) Suppose that f is continuous. Pick some y € f(A). Then y = f(z) for

some x € A.

Let V C Y be an open set containing . Then f~!(V) is an open set containing ,
and hence f~1(V) N A # 0. Therefore,

FUTVINA) C V)N fA) SV fA)

The leftmost set in this inequality is non-empty by assumption, so V N f(A) # 0.
Therefore, y € f(A). [

After this lecture, I asked Ivan about sequential continuity, a concept covered in
MAT237 and MAT257. The theorem goes:

A function f : R™ — R™ is continuous if and only if for all z € R", whenever
x, — x, then f(x,) — f(x).

My question was if this generalizes to all functions f : (X, Tx) — (Y, Ty) between
topological spaces. The = direction still holds, but again, sequences are not strong
enough for the converse to hold.

This is fixed, again, by making (X, Tx) first countable. This is explored in big list 6.9.



