
8. Finite Products

1 Motivation

This is the last part in our series exploring how to get new topological spaces from old ones.

For now, at least. We mentioned the definition of the product topology for a finite product way

back in Example 2.3.6 in the lecture notes concerning bases of topologies, but we did not do

anything with it at the time. In that same section we also discussed the following basis on R2

that we were eventually able to show generates the usual topology on R2:

B =
{

(a, b)× (c, d) ⊆ R2 : a < b, c < d
}
.

This is, essentially, how (finite) product topologies work in general, as we will see shortly.

We will also explore a new way of analyzing topological properties themselves. We have

already seen that all the topological properties we care about are preserved by homeomorphisms,

and that some are preserved under weaker maps like continuous surjections (recall that the image

of a dense set under a continuous function is dense in the range of the function). We also saw

that some topological properties are hereditary (like Hausdorffness and second countability)

while some are not (like separability). In this section we will explore another way of analyzing

properties, by asking whether they are preserved by finite products.

Also, while reading this section, note that we are specifically talking about finite products

of topological spaces, and any time we refer to a product of spaces the reader should assume we

mean a finite product. Infinite products are substantially more complicated, and we will deal

with them later in the course. Finite products are actually quite straightforward.

2 Finite product topologies

Definition 2.1. Let (X, T ) and (Y,U) be topological spaces. The product topology on X × Y is

the topology generated by the basis

{U × V : U ∈ T , V ∈ U } .

More generally if (X1, T1), . . . , (Xn, Tn) are topological spaces, the product topology on

n∏
i=1

Xi = X1 × · · · ×Xn

is the topology generated by the basis

{U1 × U2 × · · · × Un : Ui ∈ Ti for all i = 1, . . . , n } .
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8. Finite Products 8.2. Finite product topologies

Simple as that. This definition is what you should want it to be, more or less. It is natural

to expect that products of sets that are open in each coordinate should be open in the product.

That alone does not give you a topology, it turns out, but it does give you a basis. So you

generate a topology from it, and the result is the product topology.

As you would expect, bases play nicely with this definition as well, as shown by the following

easy proposition.

Proposition 2.2. Let (X, T ) and (Y,U) be topological spaces, and let BX and BY be bases on

X and Y that generate T and U , respectively. Then

B = {U × V : U ∈ BX , V ∈ BY } .

is a basis for the product topology on X × Y .

Proof. BX ⊆ T and BY ⊆ U , and so every element of B is open in the product topology.

Now fix an open set U in the product topology, and some point (x, y) ∈ U . We need to find

an element B ∈ B such that x ∈ B ⊆ U . By definition of the product topology, there must be

some UX ∈ T and UY ∈ U such that (x, y) ∈ UX ×UY ⊆ U . Using the fact that BX and BY are

bases, find sets BX ∈ BX and BY ∈ BY such that x ∈ BX ⊆ UX and y ∈ BY ⊆ UY . But then

we have:

(x, y) ∈ BX ×BY ⊆ UX × UY ⊆ U,

so B = BX ×BY is the set we were looking for.

Of course, this fact generalizes to larger finite products and the proof is similarly straight-

forward.

Remark 2.3. As a matter of notation, we will usually write X2 instead of X ×X, X3 instead

of X ×X ×X, and so on. This agrees with the usual notation for Rn.

Before going on, here are some simple examples.

Example 2.4.

1. A product of discrete spaces is discrete, and a product of indiscrete spaces is indiscrete.

2. (Rusual)
2 = R2

usual.

3. (RSorgenfrey)2 is an interesting space. This is the space generated by the basis of rectangles

with their left and bottom edges closed. You will explore this space more through some

Big List problems.
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8. Finite Products 8.3. Projections

3 Projections

We have mentioned projections functions from R2 to R already, but they have an important

relationship to products of topological spaces in general.

Definition 3.1. Let (X1, T1), . . . , (Xn, Tn) be topological spaces. Define the projection maps

πk :

n∏
i=1

Xi → Xk

for k = 1, . . . , n by πk(x1, . . . , xn) = xk.

For the purposes of writing proofs in this section, we will restrict our discussion to products

of two spaces to avoid unnecessary complication and indexing. Everything we say here will

extend to all finite products in the obvious ways.

So for two spaces (X, T ) and (Y,U), the projection functions are π1 : X × Y → X and

π2 : X × Y → Y given by

π1(x, y) := x and π2(x, y) := y.

The following fact will be of use to us. If these facts are not obvious to you from the definition

of the projection functions, draw yourself a picture and they will become obvious.

Fact 3.2. Let A ⊆ X and B ⊆ Y . Then π−11 (A) = A × Y , and π−12 (B) = X × B. Moreover,

A×B = π−11 (A) ∩ π−12 (B),

Projection functions arise naturally when you discuss Cartesian products of sets. (Notice

that the preceding fact does not mention topologies at all.) The following proposition is a way

of characterizing the product topology on X × Y in terms of the continuity of these projection

functions. At the moment it will seem unwieldy compared to the definition we gave above, but

this characterization will be very useful for us when we discuss infinite products later in the

course.

Proposition 3.3. Let (X, T ) and (Y,U) be topological spaces. Then the product topology on

X × Y is the coarsest topology on X × Y such that the projections π1 and π2 are continuous.

Proof. By the fact above it is easy to see that the projection functions are continuous in the

product topology, so it only remains to show that the product topology is the coarsest topology

with this property.

So let V be a topology on X × Y such that π1 and π2 are continuous. We will show that V
refines the product topology by showing that UX × UY ∈ V for every UX ∈ T and UY ∈ U .

So fix such a set UX × UY . Then π−11 (UX) = UX × Y and π−12 (UY ) = X × UY are in V by

assumption. Since V is a topology, the intersection of these two sets must also be in V. That is:

(UX × Y ) ∩ (X × UY ) = UX × UY ∈ V,

as required.
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8. Finite Products 8.4. Finitely productive properties

A slightly different way of seeing the previous result is that if π1 and π2 are to be continuous,

then UX × Y and X ×UY must be open in the product for all UX ∈ T and UY ∈ U , since these

are the preimages of open sets under these two maps. These sets obviously cover the product

(since the sets in T and U cover X and Y , respectively), and therefore form a subbasis on X×Y .

The basis they generate is precisely {U × V : U ∈ T , V ∈ U } (the usual basis for the product

topology), by the fact above. Therefore any topology in which the projections are continuous

must contain this basis, and therefore must refine the product topology.

Just to state this for posterity:

Proposition 3.4. Let (X, T ) and (Y,U) be topological spaces. Then the set

S :=
{
π−11 (U) : U ∈ T

}
∪
{
π−12 (V ) : V ∈ U

}
= {U × Y : U ∈ T } ∪ {X × V : V ∈ U }

is a subbasis that generates the product topology on X × Y .

The main use for the projection functions we have right now is in characterizing continuous

functions to product topologies from other spaces. It turns out that they work exactly the way

you wish they would.

This is a result you should be familiar with in the context of multivariable calculus at least.

Proposition 3.5. Let (X, T ), (Y1,U1), and (Y2,U2) be topological spaces, and let f : X → Y1×Y2
be a function. Then f is continuous if and only if π1 ◦ f and π2 ◦ f are continuous.

Proof. (⇒). This follows from the fact that a composition of continuous functions is continuous.

(⇐). Suppose π1 ◦f and π2 ◦f are continuous. We will show that the preimage of a subbasic

open subset of Y1 × Y2 like the ones we described above is open. Let U × Y2 be such a subbasic

open set. Then:

f−1(U × Y2) = f−1(π−11 (U)) = (π1 ◦ f)−1(U),

which is open since π1 ◦ f is continuous. The case of subbasic open sets of the form Y1 × V is

analogous.

4 Finitely productive properties

As promised, here is another way of analyzing topological properties.

Definition 4.1. A property φ of topological spaces is said to be finitely productive if every finite

product of topological spaces with φ has φ.

That is, if (X1, T1), . . . , (Xn, Tn) all have φ, then
∏n

i=1Xi with the product topology has φ.
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8. Finite Products 8.5. A little preview of arbitrary products

At the moment, most (but not all) of the topological properties we have studied are finitely

productive. For example, all of the following properties are finitely productive. As with the

proofs that the various properties we listed in the previous set of notes were hereditary, the

proofs here are all purely unwinding definitions. We will do one proof as an example.

1. T0 and T1.

2. Hausdorff.

3. Finite.

4. Countable (more generally, any infinite cardinality).

5. Separable.

6. First countable.

7. Second countable.

Proof that the Hausdorff property is finitely productive. As usual, it suffices to show this for a

product of two spaces. So let (X, T ) and (Y,U) be Hausdorff topological spaces, and let z1 =

(x1, y1) and z2 = (x2, y2) be distinct points in X × Y . Then it must be that x1 6= x2 or y1 6= y2

(or both). Without loss of generality, assume x1 6= x2.

Since (X, T ) is Hausdorff, let U1, U2 be disjoint open subsets of X such that x1 ∈ U1 and

x2 ∈ U2. But then U1 × Y and U2 × Y are disjoint open subsets of X × Y containing z1 and z2,

respectively. Therefore, X × Y is Hausdorff.

In the next set of notes (on the stronger separation axioms) we will see an interesting property

which is not finitely productive. For the moment though, there is one topological property we

have studied that is notably missing from the list above: the countable chain condition.

It is a somewhat surprising fact that the question of whether the product of two ccc spaces

is ccc is independent of the usual axioms of mathematics. A theorem of Rich Laver’s from the

1970s showed that if you assume the Continuum Hypothesis, then you can construct two ccc

topological spaces whose product is not ccc. On the other hand, if you assume an independent

axiom of set theory called Martin’s Axiom, an arbitrary product of ccc spaces is ccc. The proofs

of these facts are well outside the scope of this course, though interested students are encouraged

to do some research into them.

5 A little preview of arbitrary products

As we said in the first section, arbitrary products of topological spaces are a little weirder than

finite products. This is mainly because the two characterizations we gave (Definition 2.1 and

Proposition 3.3) disagree in this new context. The definition in terms of projection functions

turns out to be the “correct” one.
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8. Finite Products 8.5. A little preview of arbitrary products

To see that they are different, consider the particular case of a countably infinite product of

copies of Rusual. We will refer to the underlying set as RN.

By analogy with with Definition 2.1, we would define a topology on RN by defining the basis

B =

{∏
n∈N

Un : Un open in Rusual

}
.

So for example in this topology, the set (0, 1)× (0, 1)× (0, 1)× · · · would be a basic open set.

By analogy with Proposition 3.3 we would define the same subbasis S (which you can check

is still a subbasis in this context), and get subbasic open sets of the form:

R× R× · · · × R× U × R× · · · ,

where U is an open set in Rusual. Finite intersections of elements of this subbasis would form

a basis, as usual. However we can see that in a finite intersection of sets of this form, only

finitely many coordinates will have sets other than R. Stated another way, all but finitely many

coordinates will be R. In particular, the set (0, 1)× (0, 1)× · · · mentioned above would not be

open in this topology.

It turns out that the second definition is the one we want for arbitrary products due to some

convenient properties it has, such as a function being continuous if and only if all of its coordinate

functions are continuous (the analogue of Proposition 3.5), sequences converging if and only if

all the coordinate sequences converge, etc. This second definition is called the product topology,

while the first one (generated by the basis B) is called the box topology.

As a warm up exercise for next term, try to prove yourself that the following sequence

{xn}n∈N in RN converges in the product topology, but not in the box topology:

x1 = (1, 1, 1, 1, 1, . . . )

x2 = (0, 12 ,
1
2 ,

1
2 ,

1
2 , . . . )

x3 = (0, 0, 13 ,
1
3 ,

1
3 , . . . )

x4 = (0, 0, 0, 14 ,
1
4 , . . . )
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