
12. Metric spaces and metrizability

1 Motivation

By this point in the course, this section should not need much in the way of motivation. From the

very beginning, we have talked about Rnusual and how relatively easy it is to prove things about

it due to the fact that the topology is defined by a distance function. We have the Euclidean

distance function (a distance function is more properly called a metric) d : Rn×Rn → R defined

by

d(x, y) =
√

(y1 − x1)2 + · · ·+ (yn − xn)2,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). This metric allowed us to define ε-balls:

Bε(x) = { y ∈ Rn : d(x, y) < ε } .

We discovered that the collection of all such ε-balls forms a basis, and the topology this basis

generates is the usual topology. Everything was defined in terms of d.

We later saw that Rnusual is Hausdorff, and the proof was easy. Given two points x and y,

we can put a ball around each of them with radius 1
2d(x, y), and everything works as expected.

We similarly saw that Rnusual is regular, normal, and first countable, and all of those proofs were

also relatively easy because of the fact that the topology is generated by ε-balls.

It turns out that any space whose topology is defined by ε-balls in this way is equally nice,

for the most part. These are metric spaces. In this section we will formally define them and

explore their properties. As you will see, they are about as well-behaved as we could hope. They

are the ideal toward which other topological spaces aspire. In fact, they are almost so nice as

to not be very interesting from the point of view of the properties we have studied so far.

We will also explore how we can tell if a given topological space is a metric space. Of course,

if we are given a basis for a topology made of ε-balls for some metric we will know it is a metric

space, but what about when we do not have such a convenient description? Is the Sorgenfrey

Line a metric space, for example? We know that the usual distance function on R does not

generate this topology, but what if some other, weirder distance function does do so? Is ω1

a metric space? Is a discrete or indiscrete space a metric space? We will answer all of these

questions.

Finally, we will discuss two interesting properties that metric spaces can have.

2 Metric spaces

The core definition here is that of a metric, or a distance function. The properties in the following

definition are what a sensible notion of distance should satisfy.
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12. Metric spaces and metrizability 12.2. Metric spaces

Definition 2.1. Let X be a set. A function d : X×X → R is called a metric on X if it satisfies

the following properties:

1. For all x, y ∈ X, d(x, y) = 0 if and only if x = y.

2. d(x, y) ≥ 0 for all x, y ∈ X.

3. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X.

4. (Subadditivity) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

In this case, the pair (X, d) is called a metric space. If (X, d) is a metric space, x ∈ X, and

ε > 0, the set

Bε(x) = { y ∈ X : d(x, y) < ε }

is called the ε-ball centred at x.

The first two properties in the above definition are collectively called being positive defi-

nite. You may also recognize the last property as the triangle inequality, though the name

“subadditivity” generalizes better in other contexts.

Some examples:

Example 2.2.

1. The usual metric on R is defined by d(x, y) = |x− y|.

2. The usual metric or Euclidean metric on Rn is defined as in the Motivation section above.

This of course generalizes the definition of the usual metric on R.

3. The square metric on R2 is defined by

d(x, y) = max{|x1 − y1|, |x2 − y2|},

where x = (x1, x2) and y = (y1, y2). Make sure to draw some pictures and get a feeling for

how this metric acts in comparison with the usual metric. What does an ε-ball according

to this metric look like? (There is a hint in its name!)

This metric also generalizes in the obvious way to Rn. Make sure to take a moment to

imagine what ε-balls look like in R3, for example.

It is worth noting that this metric is sometimes called the supremum metric, for reasons

we may encounter later.

4. The taxicab metric on R2 is defined by

d(x, y) = |x1 − y1|+ |x2 − y2|.

Again, draw a picture to get a feeling for this metric. What do the ε-balls according to

this metric look like?

c©2018– Ivan Khatchatourian 2
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5. Let X be a set. Define the function d : X ×X → R by

d(x, y) =

0 x = y

1 x 6= y

This is called the discrete metric on X.

6. Let X = C[0, 1], the set of all continuous functions f : [0, 1]→ R. We define three metrics

d1, d2, d∞ : X ×X → R by:

d1(f, g) =

∫ 1

0
|f(x)− g(x)| dx

d2(f, g) =

√∫ 1

0

(
f(x)− g(x)

)2
dx

d∞(f, g) = max { |f(x)− g(x)| : x ∈ [0, 1] }

These metrics, and many others like them (you can define dp for any p ∈ (0,∞) ∪ {∞}),
are the subject of much real and functional analysis. We will not be dealing with them a

great deal in this course, but they are worth bringing up as important definitions in other

fields.

Before going on, take a moment to think about how these three metrics are similar to the

taxicab metric, the usual metric, and the square metric on R2, respectively.

Exercise 2.3. Prove that all of the function in the preceding examples are actually metrics.

3 Metric topologies

The point of defining metric spaces is of course that they come pre-packaged with a nice topology.

We formally define that topology here.

Proposition 3.1. Let (X, d) be a metric space. Then the collection

Bd := {Bε(x) : x ∈ X, ε > 0 }

is a basis on X.

Proof. This is a proof you have already done for the usual metric on Rn, but we will repeat it

here for the sake of completeness.

To prove that Bd is a basis, we must show that it covers X, and that for every B1, B2 ∈ Bd
and every x ∈ B1 ∩ B2, there is a B ∈ Bd such that x ∈ B ⊆ B1 ∩ B2. It is immediate that Bd
covers X, since x ∈ B1(x) for every x ∈ X.
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12. Metric spaces and metrizability 12.3. Metric topologies

Now, let x ∈ Bε1(x1) ∩Bε2(x2). Define

ε := min{ε1 − d(x, x1), ε2 − d(x, x2)}.

The reader is strongly encouraged at this stage to draw a picture of the situation. The definition

of ε here might look confusing, but the situation will seem very simple from a picture.

Note that ε > 0 since it is the smaller of two positive numbers. We will show that Bε(x) ⊆
Bε1(x1) ∩Bε2(x2), which will finish the proof.

Let y ∈ Bε(x). Then

d(x, y) < ε ≤ ε1 − d(x, x1)

⇒ d(x, y) + d(x, x1) < ε1

⇒ d(y, x1) ≤ d(x, y) + d(x, x1) < ε1

⇒ y ∈ Bε1(x1).

Where on the second to last line we made use of the triangle inequality. A very similar

argument shoes that y ∈ Bε2(x2), as required.

Having established that Bd is a basis on X, we state our main definition.

Definition 3.2. Let (X, d) be a metric space. The topology generated by the basis Bd on X is

called the metric topology (or more properly the metric topology generated by d) on X.

Remark 3.3. This remark is for the very pedantic reader. Strictly speaking, a “topological

space” is a pair (X, T ) where X is a set and T is a topology on X. A “metric space” is a pair

(X, d) where X is a set and d is a metric on X. These two objects are not the same, even

if the topology T is the metric topology generated by d. We now know that given a metric

space (X, d), there is a canonical topological space associated to it. On the other hand, given

a topological space (X, T ), there may be many metrics on X (ie. many metric spaces whose

underlying set is X) that have this space associated to them. We will explore this a bit later.

All of this is to say that a “metric space” does not have a topology strictly speaking, though

we will often refer to metric spaces as though they are topological spaces.

Example 3.4.

1. All three of the metrics on R2 we defined in Example 2.2 generate the usual topology on

R2. Make sure to convince yourself of this using a picture (a formal proof should not be

necessary once you understand your picture).

2. The discrete metric on a set X generates the discrete topology on X.
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12. Metric spaces and metrizability 12.4. Metrizability

4 Metrizability

Now that we have defined metric topologies, we want to describe some of the nice properties

they have. Before that, however, we want to give a name to those topological spaces whose

topologies are metric topologies. As we have seen, every metric space has a canonical topology

associated with it, but a given topology on a set can be generated by many different metrics.

Definition 4.1. A topological space (X, T ) is said to be metrizable if there is a metric d on X

that generates T .

Due to the fact that very different looking metrics can generate the same topology, we usually

talk about metrizable spaces rather than about metric spaces. The particular details of a metric

are often not important to us. We care about the topologies they generate.

As a topological property, metrizability is very well-behaved, as the following few propositions

demonstrate.

Proposition 4.2. Metrizability is a topological invariant.

Proof. Let (X, T ) and (Y,U) be a topological spaces, and let f : X → Y be a homeomorphism.

Suppose d : X ×X → R is a metric that generates T . Define ρ : Y × Y → R by

ρ(y1, y2) := d(f−1(y1), f−1(y2)).

That is, we define the distance between points in Y to equal the distance of the corresponding

points in X, where the correspondence is the homeomorphism.

We first check that ρ is a metric on Y . ρ is positive definite since f is injective and d is

positive definite. ρ is symmetric since d is symmetric. It remains to check that ρ is subadditive,

which is left to the reader as an easy exercise.

We now check that ρ generates U , which is to say that the basis Bρ generates U . To check

that Bρ ⊆ U , let U = Bε(y) ∈ Bρ be a ε-ball according to ρ. Then U = f
(
Bε(f

−1(y))
)

(where

this ε-ball is according to d), which is open since f is open.

Next, let U ∈ U and y ∈ U . We need to find an ε > 0 such that Bε(y) ⊆ U . Again we

use the fact that in this metric, f does not change distances. f−1(U) is an open subset of X

containing f−1(y), so since X is metrizable there is an ε > 0 such that Bε(f
−1(y)) ⊆ f−1(U).

But then Bε(y) ⊆ U , as required.

Proposition 4.3. Metrizability is finitely productive.

Proof. This proof is just like what happens in Rnusual. Let (X1, d1), . . . , (Xn, dn) be metric spaces.

Then any of the following three metrics on X1 × · · · × Xn generates the product topology. In

each case, let x = (x1, . . . , xn) and y = (y1, . . . , yn).

d(x, y) =
√
d1(x1, y1)2 + · · ·+ dn(xn, yn)2
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d(x, y) = max{d1(x1, y1), . . . , dn(xn, yn)}

d(x, y) = d1(x1, y1) + · · ·+ dn(xn, yn)

Checking that all of these metrics generates the product topology on X1 × · · · ×Xn is left

as an easy, if tedious, exercise for the reader. Pictures and analogies with R2 are strongly

encouraged.

Proposition 4.4. Metrizability is hereditary.

Proof. Let (X, d) be a metric space, and let A ⊆ X. Use the same metric on A! It is easy to

check that it generates the subspace topology.

Before we go on, notice that the last two propositions open up a lot more examples of metric

spaces for us. Before this we basically only knew Rnusual and discrete spaces, but now we have

any products and subspaces of those to work with. For example the circle S1 ⊆ R2, the torus

S1 × S1 ⊆ R3, the set GL(3,R) of invertible 3 × 3 matrices with real coefficients (seen as a

subspace of R9), ω + 1 (which we have seen is homeomorphic to a subspace of Rusual), etc. are

all metrizable spaces.

5 Properties of metrizable spaces

We started this note by promising that metric spaces are very nice. We will justify that claim

in this section.

Proposition 5.1. Every metrizable space is T2, T3, and T4.

Proof. Exercise. (Note that in Section 9 of the lecture notes we proved that Rnusual is normal.

Exactly the same proof shows that every metrizable space is normal. The proof that a metrizable

space is Hausdorff is more or less immediate from a picture.)

So metric spaces, like the order topologies we learned about recently, are all very separative.

That is, they are good at separating things from one another with open sets. The ability to

“draw balls” around things is very powerful.

The behaviour of metric spaces with respect to countability properties is a little more subtle.

Proposition 5.2. Every metric space is first countable.

Proof. The proof that Rnusual is first countable amounted to noticing that the collection

Bx =
{
B 1

n
(x) : n ∈ N

}
is a countable local basis at x. The same proof works in any metrizable space. Simply choose a

metric that generates the topology, and form the same collection of 1
n -balls around any point.
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After that, the natural questions to ask are whether metric spaces have the other countability

properties: second countability, separability, and the countable chain condition. Earlier we

learned that every discrete space is metrizable, and so since there are uncountable discrete

spaces (like Rdiscrete, for example) we can immediately conclude that not every metrizable space

necessarily has any of these properties.

What is nice however is that for a metrizable space, these three properties are the same.

Proposition 5.3. Let (X, T ) be metrizable. Then the following are equivalent.

1. (X, T ) is separable.

2. (X, T ) is second countable.

3. (X, T ) has the countable chain condition.

Proof. We have done some of this already. On the Big List, you showed that every second

countable topological space (metrizable or otherwise) is separable, and that every separable

topological space is ccc. In the numbering of this Proposition, that means we already know

(2)⇒ (1)⇒ (3) for any topological space.

All that remains to be shown is that every metrizable space with the countable chain condi-

tion is second countable. This proof (with hints) will appear on the Big List.

6 Putting things together

We now know a great deal about metrizable spaces. Hopefully enough that you believe metrizable

spaces are very nice. We know some “basic” metric spaces: Rnusual and any discrete space, along

with any subspaces and any finite products of those.

The question we should be asking ourselves now is: What other spaces are metrizable? If

these are the nicest sorts of spaces, we should hope to be able to identify them easily. The

question of whether a given topological space is metrizable turns out to be a very rich and

interesting one that has motivated a great deal of research over the years. There is a whole group

of theorems called “metrization theorems” that concern which combinations of other topological

properties imply metrizability. We will learn about one of these, the Urysohn Metrization

Theorem, later in the course. Its proof is very interesting.

For now though, the results from the previous section give us some tools for easily checking

that a space is not metrizable.

Example 6.1.

1. If X has more than two points, then (X, Tindiscrete) is not metrizable, since it is not Haus-

dorff.

2. Any non-first countable space is not metrizable. In particular, ω1 + 1, Rco-countable and

Rco-finite are not metrizable.
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3. The Sorgenfrey line is not metrizable, since it is separable but not second countable.

4. The Sorgenfrey Square X = RSorgenfrey × RSorgenfrey is not metrizable for the same reason

as the previous example, but also because RSorgenfrey is non-metrizable and homeomorphic

to R× {0} as a subspace of X.

It turns out that ω1 is also not metrizable, though we do not yet have the tools to prove it

easily. Recall that since it has an order topology, it is T2, T3, and T4. We also saw that it is

first countable, not separable (and therefore not second countable), and we used Zorn’s Lemma

to prove that it does not satisfy the countable chain condition. So far it looks like it could be

metrizable. We will return to this question later in the course.

7 Two properties metric spaces can have

In this last section we mention two properties that metric spaces can have, which do not make

sense for other topological spaces.

The first one is really a property of metric spaces (X, d) rather than of metrizable spaces.

Recall that different metrics on the same set can generate the same topology. This property

does care about the specific metric being used. It is still useful for us in topology, as we will

soon see.

Definition 7.1. Let (X, d) be a metric space. We define the diameter of the space to be

diam(X) := sup { d(x, y) : x, y ∈ X } .

We allow diam(X) =∞ the set of distances above is unbounded. (X, d) is said to be bounded if

diam(X) <∞.

This should seem like a reasonable definition. For example, we know that every discrete

metric space is bounded, (0, 1) with its usual metric is bounded, while R with its usual metric

is not bounded. Boundedness of a metric space is very useful in certain proofs.

You should be asking yourself, so what? Why should we care about a property of the metric

itself? We learned earlier that metrizable spaces are what we should study, so we should not

care about properties of specific metrics.

The previous examples illustrate the nice fact here. Even though R and (0, 1) with their usual

metrics are unbounded and bounded, respectively, we already know they are homeomorphic as

topological spaces. In fact, the following proposition says that we can assume every metrizable

space is generated by a bounded metric.

Proposition 7.2. Let (X, T ) be metrizable. Then T can be generated by a bounded metric.

Proof. Suppose d : X ×X → R is a metric that generates T . Define another metric d on X by

d(x, y) = min{1, d(x, y)}.
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Then d also generates T .

Exercise 7.3. Complete the proof of the previous Proposition.

Another bounded metric we could have used in the proof is

d0(x, y) =
d(x, y)

1 + d(x, y)
.

Also verify that this one works in the proof.

The second property is one that should be familiar from first or second year calculus. The

definition here is exactly the same as it was there, but this is the first time we have had the

ability to express it in our more general context.

Definition 7.4. Let (X, d) be a metric space (just a metric space, no topology needed for this

definition). A sequence {xn}n∈N is said to be a Cauchy sequence if

∀ε > 0, ∃N ∈ N such that d(xn, xm) < ε for all n,m > N.

Intuitively, a Cauchy sequence is one in which the terms get arbitrarily close to one another

as you go farther out in the sequence.

Definition 7.5. Let (X, d) be a metric space (this time thought of as a topological space with

its metric topology). (X, d) is said to be complete if every Cauchy sequence in X converges.

For example, you should already know that Rusual is complete. (0, 1) and Q, both seen as

subspaces of Rusual, are easily seen to not be complete.

Note in particular that this shows that completeness is not a topological invariant. As with

boundedness, whether or not a sequence is Cauchy depends on the particular metric being

used. If two metric spaces (thinking of them with specific, fixed metrics) are homeomorphic

as topological spaces, the image of a Cauchy sequence need not be Cauchy. For example, we

know that Rusual is homeomorphic to (−π
2 ,

π
2 ) via arctan, but under that map the sequence

1, 2, 3, 4, . . . in R—which is obviously not Cauchy with respect to the usual metric on R—will

map to a Cauchy sequence in (0, 1).

The problem here is that homeomorphisms, as nice as they are, are not good ways of com-

paring metric spaces. They compare topologies well, but they are not able to preserve properties

that use the specifics of metrics. A function that preserves metric space structure is called an

isometry. To be clear:

Definition 7.6. Let (X1, d1) and (X2, d2) be metric spaces. A function f : X1 → X2 is said to

be an isometry if d1(x, y) = d2(f(x), f(y)) for all x, y ∈ X1.

Note that any isometry is injective. A bijective isometry is sometimes called a global isometry

or an isometric isomorphism. If such a function exists, we say X1 and X2 are isometric.
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A consequence of this is that isometric metric spaces are not only homeomorphic as topo-

logical spaces (since their topologies are generated by essentially the same metric), but the

properties like boundedness and completeness that depend on the specifics of the metric are

also preserved. Boundedness and completeness are metric space invariants, but not topological

invariants.

Note in particular that while proving Proposition 4.2, the metric ρ we defined on Y made

(Y, ρ) isometric to (X, d).
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