
15. Urysohn’s metrization theorem

1 Motivation

By this point in the course, I hope that once you see the statement of Urysohn’s metrization

theorem you don’t feel that it needs much motivating. Having studied metric spaces in detail

and having convinced ourselves of how nice they are, a theorem that gives conditions implying

that a space is metrizable should seem innately useful.

The techniques used in this proof are also very important ones. One of the biggest pay-

offs for defining topologies on arbitrary products is that large product spaces (function spaces,

specifically) lend themselves very well to embedding things in them. To be more specific, we are

going to show a space (X, T ) is metrizable by embedding it as a subspace of a metrizable space,

specifically RN
prod.

2 Statement, and preliminary construction

Without further delay, here is the theorem.

Theorem 2.1 (Urysohn metrization theorem). Every second countable T3 topological space is

metrizable.

Note that even though second countability, separability, and ccc-ness are equivalent in every

metrizable space, you need second countability in this theorem. RSorgenfrey is a space we know

that is T3 and separable but not metrizable. It is also relatively easy to construct a space that

is ccc and T3 but not separable (and therefore not metrizable) by taking a very large product

of ({0, 1}, Tdiscrete) with itself. (It should not be obvious that such a space is ccc, but it is.)

We will give two proofs of Urysohn’s metrization theorem. One embeds the space into RN
prod,

and the other embeds the space into RN
unif. Both proofs start with the same initial step, so we

do that part first, and then split the proof into two parts.

To begin the proof, let (X, T ) be a second countable T3 space, and let B = {Bn : n ∈ N }
be a countable basis for T . We fix this notation until the end of both proofs of the main result.

First, recall Theorem 4.1 from section 9 of the lecture notes (on stronger separation axioms).

Theorem 2.2. Every regular, second countable topological space is normal.

So (X, T ) is normal. This allows us to use Urysohn’s Lemma in the construction we are

about to undertake.

Lemma 2.3. There is a countable collection { fn : X → [0, 1] : n ∈ N } of continuous functions

such that for any a ∈ X and any open set U containing a, there is some n ∈ N such that

fn(a) > 0 and fn(x) = 0 for all x ∈ X \ U .
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Note that if given a specific a and U , it is easy to find a single function that has this

property using Urysohn’s Lemma (since {a} and X \ U are disjoint closed sets in this space).

The strength of this lemma is that there is a countable collection of functions from which you

can find a function that does it no matter which point and which set you pick. In a large space

there could of course be uncountably many points and sets to separate in this manner, but this

lemma says that one of a countable collection of functions can work for all of them.

Proof of Lemma 2.3. Let A ⊆ N×N be the set of ordered pairs of natural numbers (m,n) such

that Bm ⊆ Bn. A is certainly countable, and as we will see shortly it is nonempty.

For each (m,n) ∈ A, apply Urysohn’s Lemma to the disjoint closed sets Bm and X \ Bn to

obtain a continuous function gm,n : X → [0, 1] such that gm,n(x) = 0 for all x ∈ X \ Bn and

gm,n(x) = 1 for all x ∈ Bm. Then the collection { gm,n : (m,n) ∈ A } will be our countable

collection of functions. It remains to check that this collection works.

Fix a point a ∈ X and an open set U containing a. Since B is a basis, we can find some

n ∈ N such that a ∈ Bn ⊆ U . Since the space is regular, we can find an open set V such that

a ∈ V ⊆ V ⊆ Bn ⊆ U.

Finally, again since B is a basis we can find some m ∈ N such that a ∈ Bm ⊆ V . Then we have:

a ∈ Bm ⊆ Bm ⊆ V ⊆ Bn ⊆ U,

and in particular we have a ∈ Bm ⊆ Bn ⊆ U . Then the function gm,n defined for this pair of

numbers satisfies the requirements of the lemma.

3 First proof

Proof of Theorem 2.1. As we said, this proof will proceed by constructing a continuous injection

F : X → RN
prod that is a homeomorphism onto its range.

Let { fn : n ∈ N } be a collection of functions as in Lemma 2.3. We could of course use the

specific set of functions defined in the proof of the Lemma, but from this point onwards we do

not need to be that specific. Define F : X → RN by

F (x) = (f1(x), f2(x), f3(x), . . . ).

This function is continuous since each of its component functions is continuous. It is also injective

since for any x 6= y ∈ X, we can find an open set U containing x but not y, and therefore we

can find an n ∈ N such that fn(x) > 0 and fn(y) = 0, and therefore F (x) 6= F (y).

Let Y = F (X) ⊆ RN be the range of F . We already know that Y is metrizable (with its

subspace topology), since RN
prod is metrizable, and we just established that F is continuous and

injective. All that remains to show is that F is open.
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So fix an open set U ⊆ X. We show that F (U) is open in Y . We will do this in the

usual way, by fixing an arbitrary point b ∈ F (U) and finding an open subset V of Y such that

b ∈ V ⊆ F (U).

Let a = F−1(b) ∈ U (the preimage is a single point since F is injective). By the lemma,

there is some N ∈ N such that fN (a) > 0 and fN (x) = 0 for all x ∈ X \ U . We define our open

set V ⊆ Y by:

V := Y ∩ π−1N ((0,∞)).

This set is open in the subspace topology on Y since π−1N ((0,∞)) is a basic open subset of RN
prod.

Note that b ∈ V since

πN (b) = πN (F (a)) = fN (a) > 0.

The last thing to show is that V ⊆ F (U). To show this, fix an arbitrary y ∈ V . Since y ∈ Y ,

we can define x := F−1(y). Since y ∈ π−1N ((0,∞)) we have that

0 < πN (y) = πN (F (x)) = fN (x).

But we know that fN is zero for all points outside of U , and therefore it must be the case that

x ∈ U , and in turn that y = F (x) ∈ F (U), as required.

This shows that F : X → Y is a homeomorphism, and therefore that X is metrizable.

Note that we actually embedded X as a subspace of [0, 1]N ⊆ RN. It should not be so

surprising that this is possible, given that we know any metrizable space can be generated by a

bounded metric. The space (0, 1)N is homeomorphic to RN, and so if anything embedding into

[0, 1]N gives us more room to work with.

4 Second proof

Before we begin, note that we may assume the functions { fn : n ∈ N } provided by Lemma 2.3

actually map into [0, 1n ] rather than [0, 1], since we can simply replace fn by 1
nfn if necessary.

Proof of Theorem 2.1. In this proof, we embed X into the “Hilbert cube” H :=
∏
n∈N[0, 1n ] with

the topology generated by the uniform metric. To be clear, let du be the metric defined on H

by

du(x, y) = sup { |xn − yn| : n ∈ N } ,

where x = (x1, x2, x3, . . . ) as usual, and similarly for y. Throughout this proof, we will assume

H has the metric topology generated by du (or in other words the subspace topology inherited

from RN
unif). Recall also that the uniform topology refines the product topology.

We define F : X → H in the same way as before:

F (x) = (f1(x), f2(x), f3(x), . . . ),
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(where remember that we are assuming fn maps into [0, 1n ] for each n).

Our previous argument also shows that F is injective, and F is still open since the uniform

topology refines the product topology. It remains only to show that F is continuous, which is

no longer obvious since we are not using the product topology.

We prove that F is continuous using the “continuity at a point” characterization of continuity.

So fix a ∈ X, and fix ε > 0. We want to find an open set U containing a such that

x ∈ U =⇒ du(F (a), F (x)) < ε,

or in other words that F (U) ⊆ Bε(F (a)).

This argument proceeds similarly to the proof that RN
prod is metrizable, by splitting things

up to a finite part we can explicitly take care of, and an infinite tail which is so small that it

doesn’t matter.

Fix an N ∈ N so large that 1
N < ε

2 . Then for each n ≤ N , since fn is continuous we can find

an open set Un containing a such that

|fn(a)− fn(x)| < ε

2

for all x ∈ Un. Then U := U1 ∩ U2 ∩ · · · ∩ UN is our desired open set. Indeed, if x ∈ U , then by

construction |fn(x)− fn(a)| < ε
2 for all n ≤ N . On the other hand if n > N , then

|fn(x)− fn(a)| ≤ 1

n
<

1

N
<
ε

2

since fn maps into [0, 1n ]. In total, we have that |fn(x)− fn(a)| < ε
2 for all n ∈ N. Therefore

du(F (x), F (a)) = sup { |fn(x)− fn(a)| : n ∈ N } ≤ ε

2
< ε,

as required.
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