Semiclassical Asymptotics. Problems
$\renewcommand{\Re}{\operatorname{Re}}$
$\renewcommand{\Im}{\operatorname{Im}}$
$\newcommand{\bR}{\mathbb{R}}$
$\newcommand{\bC}{\mathbb{C}}$
$\newcommand{\bZ}{\mathbb{Z}}$
$\newcommand{\const}{\operatorname{const}}$
Problems to Chapter 5
- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem 5
- Problem 6
- Problem 7
Problem 1.
For 1D-problem
\begin{align}
&u_{tt}-u_{xx}=0,\\
&u|_{t=0}=e^{ikx},\\
&u_t|_{t=0}=-ike^{ikx}
\end{align}
- write eikonal equation for phase $\phi$ and solve it.
- write transport equations and solve them.
Problem 2.
For 1D-problem
\begin{align}
&u_{tt}-x^2 u_{xx}=0,\\
&u|_{t=0}=e^{ikx},\\
&u_t|_{t=0}=-ikxe^{ikx}
\end{align}
- write eikonal equation for phase $\phi$ and solve it.
- write transport equation for $A_0$ and solve it.
Problem 3.
For 2D-problem
\begin{align}
&u_{tt}-\Delta u=0,\\
&u|_{t=0}=e^{ik\sqrt{x^2+y^2}},\\
&u_t|_{t=0}=ike^{ik\sqrt{x^2+y^2}}
\end{align}
- write eikonal equation for phase $\phi$ and solve it.
- write transport equation for $A_0$ and solve it.
Problem 4.
For 3D-problem
\begin{align}
&u_{tt}-\Delta u=0,\\
&u|_{t=0}=e^{ik\sqrt{x^2+y^2+z^2}},\\
&u_t|_{t=0}=-ike^{ik\sqrt{x^2+y^2+z^2}}
\end{align}
- write eikonal equation (for phase $\phi$ and solve it.
- write transport equation for $A_0$ and solve it.
Problem 5.
For 1D-equation
\begin{align}
- h^2 u_{xx} +V(x) u=Eu ,
\end{align}
- write equation for phase $\phi$;
- write dynamical system.
- Consider $V(x)=x^2$.
- Consider $V(x)=|x|$.
Problem 6.
For 3D-equation
\begin{align}
- h^2 \Delta u +V(\boldsymbol{x}) u=Eu ,
\end{align}
- write equation for phase $\phi$;
- write dynamical system.
- Consider $V(\boldsymbol{x})=|\boldsymbol{x}|^2$.
- Consider $V(\boldsymbol{x})=|\boldsymbol{x}|$.
Problem 7.
For 3D-equation
\begin{align}
\bigl(-ih \nabla - \boldsymbol{A}\bigr) ^2 u +V(x) u=Eu ,
\end{align}
- write equation for phase $\phi$;
- write dynamical system.
- Consider $V(\boldsymbol{x})=|\boldsymbol{x}|^2$, $\boldsymbol{A}= x_1\boldsymbol{i}$.
- Consider $V(\boldsymbol{x})=0$, $\boldsymbol{A}= x_2 \boldsymbol{i}$.
- Consider $V(\boldsymbol{x})=|\boldsymbol{x}|^2$, $\boldsymbol{A}= x_2\boldsymbol{i}$.
$\Leftarrow$ $\Uparrow$ $\Rightarrow$