$\renewcommand{\Re}{\operatorname{Re}}$ $\renewcommand{\Im}{\operatorname{Im}}$ $\newcommand{\bR}{\mathbb{R}}$ $\newcommand{\bC}{\mathbb{C}}$ $\newcommand{\bZ}{\mathbb{Z}}$ $\newcommand{\const}{\operatorname{const}}$ $\newcommand{\sgn}{\mathrm{sgn}}$
Introduce sets
Problem 1. For $\Phi (x,t)= t^3 -3tx$ find these sets.
Problem 2. For $\Phi (x,t)= 2t^3 -3t^2x$ find these sets.
Problem 3. For $\Phi (x,t)= t^4 -4t x$ find these sets.
Problem 4. For $\Phi (x,t)= t^4 - 2t^2 x$ find these sets.
Problem 5. For $\Phi (x,t)= 3t^4 - 4t^3 x$ find these sets.
Consider equation \begin{gather} -h^2u_{xx}+ V(x) u= Eu \label{eq-6.P.1} \end{gather}
Problem 6. Calculate approximately eigenvalues of equation (\ref{eq-6.P.1}) with $V(x)=x^2$.
Problem 7. Calculate approximately eigenvalues of equation (\ref{eq-6.P.1}) with $V(x)=|x|$.
Problem 8. Calculate approximately eigenvalues $E > 0$ of equation (\ref{eq-6.P.1}) with $V(x)= \left\{\begin{aligned} & |x| && |x|<1,\\ & \infty && |x|>1. \end{aligned}\right.$
Problem 9. Calculate approximately eigenvalues $E > 0$ of equation (\ref{eq-6.P.1}) with $V(x)= \left\{\begin{aligned} & x^2 && |x|<1,\\ & \infty && |x|>1. \end{aligned}\right.$
Problem 10. Calculate approximately eigenvalues $E < 0$ of equation (\ref{eq-6.P.1}) with $V(x)= \left\{\begin{aligned} & -|x| && |x|<1,\\ & \infty && |x|>1. \end{aligned}\right.$
Problem 11. Calculate approximately eigenvalues $E < 0$ of equation (\ref{eq-6.P.1}) with $V(x)= \left\{\begin{aligned} & -x^2 && |x|<1,\\ & \infty && |x|>1. \end{aligned}\right.$
Problem 12. Calculate approximately eigenvalues $E < 0$ of equation (\ref{eq-6.P.1}) with $V(x)= \left\{\begin{aligned} & 0 && |x|<1,\\ & -1 &&1\le |x|\le 2,\\ & \infty && |x|>2. \end{aligned}\right.$