WKB in dimension ≥ 2. P
$\renewcommand{\Re}{\operatorname{Re}}$
$\renewcommand{\Im}{\operatorname{Im}}$
$\newcommand{\bR}{\mathbb{R}}$
$\newcommand{\bC}{\mathbb{C}}$
$\newcommand{\bZ}{\mathbb{Z}}$
$\newcommand{\const}{\operatorname{const}}$
$\newcommand{\sgn}{\operatorname{sgn}}$
$\newcommand{\rank}{\operatorname{rank}}$
Problems to Chapter 7
- Problem 1
- Problem 2
- Problem 3
- Problem 4
Problem 1.
For $\Phi (x,y,t)= t^4 + yt^2 +xt$ find
- $\Theta: = \{(x,y,t)\colon \Phi_t(x,y, t)=0\}$;
- $\Theta_{\text{sing}}: = \{(x,y,t)\colon \Phi_{tt} (x,y,t)=\Phi _{tx}(x,y,t) = \Phi _{ty}(x,y,t)=0\}$;
- Lagrangian manifold $\Lambda := \{(x,y,\Phi_x,\Phi_y) \colon (x,y,t)\in \Theta \setminus \Theta_{\text{sing}}\}$;
- $\pi_X \Lambda :=\{(x,y)\colon \exists t\ \Phi _t (x,y,t)=0\}$;
- Caustic set $\Lambda_0:= (x,y)\colon \exists t\ \Phi _t (x,y,t)=\Phi _{tt} (x,y,t)=0 \}$.
Problem 2.
For $\Phi (x,y,z,t)= t^5 + zt^3+ yt^2 +xt$ find
- $\Theta: = \{(x,y,z,t)\colon \Phi_t(x,y,z, t)=0\}$;
- $\Theta_{\text{sing}}: = \{(x,y,z,t)\colon \Phi_{tt} (x,y,z,t)=\Phi _{tx}(x,y,z,t) = \Phi _{ty}(x,y,z,t)=\Phi _{tz}(x,y,z,t)=0\}$;
- Lagrangian manifold $\Lambda := \{(x,y,z,\Phi_x,\Phi_y,\Phi_z) \colon (x,y,z,t)\in \Theta \setminus \Theta_{\text{sing}}\}$;
- $\pi_X \Lambda :=\{(x,y,z)\colon \exists t\ \Phi _t (x,y,z,t)=0\}$;
- Caustic set $\Lambda_0:= (x,y,z)\colon \exists t\ \Phi _t (x,y,z,t)=\Phi _{tt} (x,y,z,t)=0 \}$.
Problem 3.
Calculate asymptotics as $k\to \infty$
\begin{gather*}
\iint_{-\infty}^\infty e^{i k (s^2t^2 -sx -ty)}\,ds dt.
\end{gather*}
Problem 4.
Calculate asymptotics as $k\to \infty$
\begin{gather*}
\iint_{-\infty}^\infty e^{i k (s^3t^3 -sx -ty)}\,ds dt.
\end{gather*}
$\Leftarrow$ $\Uparrow$ $\Rightarrow$