WKB in dimension ≥ 2. P

$\renewcommand{\Re}{\operatorname{Re}}$ $\renewcommand{\Im}{\operatorname{Im}}$ $\newcommand{\bR}{\mathbb{R}}$ $\newcommand{\bC}{\mathbb{C}}$ $\newcommand{\bZ}{\mathbb{Z}}$ $\newcommand{\const}{\operatorname{const}}$ $\newcommand{\sgn}{\operatorname{sgn}}$ $\newcommand{\rank}{\operatorname{rank}}$

Problems to Chapter 7

  1. Problem 1
  2. Problem 2
  3. Problem 3
  4. Problem 4

Problem 1.

For $\Phi (x,y,t)= t^4 + yt^2 +xt$ find

  1. $\Theta: = \{(x,y,t)\colon \Phi_t(x,y, t)=0\}$;
  2. $\Theta_{\text{sing}}: = \{(x,y,t)\colon \Phi_{tt} (x,y,t)=\Phi _{tx}(x,y,t) = \Phi _{ty}(x,y,t)=0\}$;
  3. Lagrangian manifold $\Lambda := \{(x,y,\Phi_x,\Phi_y) \colon (x,y,t)\in \Theta \setminus \Theta_{\text{sing}}\}$;
  4. $\pi_X \Lambda :=\{(x,y)\colon \exists t\ \Phi _t (x,y,t)=0\}$;
  5. Caustic set $\Lambda_0:= (x,y)\colon \exists t\ \Phi _t (x,y,t)=\Phi _{tt} (x,y,t)=0 \}$.

Problem 2.

For $\Phi (x,y,z,t)= t^5 + zt^3+ yt^2 +xt$ find

  1. $\Theta: = \{(x,y,z,t)\colon \Phi_t(x,y,z, t)=0\}$;
  2. $\Theta_{\text{sing}}: = \{(x,y,z,t)\colon \Phi_{tt} (x,y,z,t)=\Phi _{tx}(x,y,z,t) = \Phi _{ty}(x,y,z,t)=\Phi _{tz}(x,y,z,t)=0\}$;
  3. Lagrangian manifold $\Lambda := \{(x,y,z,\Phi_x,\Phi_y,\Phi_z) \colon (x,y,z,t)\in \Theta \setminus \Theta_{\text{sing}}\}$;
  4. $\pi_X \Lambda :=\{(x,y,z)\colon \exists t\ \Phi _t (x,y,z,t)=0\}$;
  5. Caustic set $\Lambda_0:= (x,y,z)\colon \exists t\ \Phi _t (x,y,z,t)=\Phi _{tt} (x,y,z,t)=0 \}$.

Problem 3. Calculate asymptotics as $k\to \infty$ \begin{gather*} \iint_{-\infty}^\infty e^{i k (s^2t^2 -sx -ty)}\,ds dt. \end{gather*}

Problem 4. Calculate asymptotics as $k\to \infty$ \begin{gather*} \iint_{-\infty}^\infty e^{i k (s^3t^3 -sx -ty)}\,ds dt. \end{gather*}


$\Leftarrow$  $\Uparrow$  $\Rightarrow$