$\renewcommand{\Re}{\operatorname{Re}}$ $\renewcommand{\Im}{\operatorname{Im}}$ $\newcommand{\bR}{\mathbb{R}}$ $\newcommand{\bC}{\mathbb{C}}$ $\newcommand{\bZ}{\mathbb{Z}}$ $\newcommand{\const}{\operatorname{const}}$ $\newcommand{\sgn}{\operatorname{sgn}}$ $\newcommand{\rank}{\operatorname{rank}}$
Reminder. In Section 8.2 was constructed solution $u_\varepsilon (t)$ to the problem \begin{align} &u'' +2\varepsilon u' +u=0, \label{eq-8.P.1}\\ &u(0)=1, \qquad u'(0)=0\label{eq-8.P.2} \end{align} for $\varepsilon ^3t\ll 1$ modulo $O(\varepsilon^3)$ as \begin{gather} u_\varepsilon (t) \sim w _0(t, \varepsilon t, \varepsilon_2 t) + w _1(t, \varepsilon t)\varepsilon + w _2(t)\varepsilon^2. \label{eq-8.P.3} \end{gather}
Problem 1.
Problem 2.
For problem (\ref{eq-8.P.4})-(\ref{eq-8.P.5}) write solution modulo $O(\varepsilon^4)$ for $\varepsilon ^2t \ll 1$ (lesser error but under stronger restriction). What should be instead of (\ref{eq-8.P.3})?
Problem 3.
For problem (\ref{eq-8.P.1})-(\ref{eq-8.P.2}) write solution modulo $O(\varepsilon^4)$ for $\varepsilon ^2t \ll 1$ (lesser error but under stronger restriction). What should be instead of (\ref{eq-8.P.3})?
Problem 4. Write what form we would look for solution $u_\varepsilon (t)$ for $\varepsilon ^Kt\ll 1$ modulo $O(\varepsilon^M)$.
Reminder. In Section 8.3 was constructed solution $u_\varepsilon (t)$ to the problem (\ref{eq-8.P.1})-(\ref{eq-8.P.2}) modulo $O(\varepsilon ^3)$ in the form \begin{gather} u _\varepsilon = w_0 (T,\tau) + w_1 (T, \tau)\varepsilon + w_2(T,\tau)\varepsilon^2 \label{eq-8.P.6} \end{gather} with \begin{gather} T= (1+\nu_2 \varepsilon^2)t , \qquad \tau =\varepsilon t. \label{eq-8.P.7} \end{gather}
Problem 5.
Repeat construction of Section Section 8.3 for problem (\ref{eq-8.P.4})-(\ref{eq-8.P.5}).
Problem 6.
For problem (\ref{eq-8.P.4})-(\ref{eq-8.P.5}) write solution modulo $O(\varepsilon^4)$ for $\varepsilon ^2t \ll 1$ (lesser error but under stronger restriction). What should be instead of (\ref{eq-8.P.6})?
Problem 7.
For problem (\ref{eq-8.P.1})-(\ref{eq-8.P.2}) write solution modulo $O(\varepsilon^4)$ for $\varepsilon ^2t \ll 1$ (lesser error but under stronger restriction). What should be instead of (\ref{eq-8.P.6})?
Problem 8.
Write what form we would look for solution $u_\varepsilon (t)$ for $\varepsilon ^Kt\ll 1$ modulo $O(\varepsilon^M)$.
Problem 9.
Repeat construction of Section Section 8.3 for problem (\ref{eq-8.P.4})-(\ref{eq-8.P.5}).