MAT1000HF FALL 2017 Assignment 1 Due Sept 20th

PROBLEM 1

Let A be an index set, $\{X_\alpha\}_{\alpha\in A}$ a family of non-empty sets and for each $\alpha\in A$ let \mathcal{M}_α be a σ -algebra on X_α . Consider the product space

$$X = \prod_{\alpha \in A} X_{\alpha}.$$

Let $\mathcal M$ be the σ -algebra generated by the cylinder sets $\{\pi_{\alpha}^{-1}(E_{\alpha})|E_{\alpha}\in\mathcal M_{\alpha}, \alpha\in A\}$ and $\mathcal M^*$ be the one generated by boxes $\{\prod_{\alpha\in A}E_{\alpha}|E_{\alpha}\in\mathcal M_{\alpha}\}$. Show that $\mathcal M\subset\mathcal M^*$ but in general $\mathcal M\neq\mathcal M^*$

Hint 1: Proposition 1.3 implies that if A is countable then $\mathcal{M}=\mathcal{M}^*$; we should thus take A to be not countable.)

Hint 2: You might find useful to first prove the following intermediate result. For any $A'\subset A$ let $\mathcal{M}_{A'}=\mathcal{M}(\{\pi_{\alpha}^{-1}(E_{\alpha})|E_{\alpha}\in\mathcal{M}_{\alpha},\alpha\in A'\});$ let now

$$\tilde{\mathcal{M}} = \bigcup_{A' \subset A \text{countable}} \mathcal{M}_{A'}$$

Then show that $\mathcal{M}=\tilde{\mathcal{M}}$ (Hint²: show that $\tilde{\mathcal{M}}$ is a σ -algebra which contains the cylinders...) The above can be loosely stated as "any set in \mathcal{M} is determined by countably many coordinates"

Solve problems 2 4 5 s.t. 7 9 10 from Folland Chapter 1