MAT1000HF Fall 2017 Midterm Practice Problems Due Oct 30th

PROBLEM 1 (Diophantine condition) For $\gamma, \tau > 0$, define the set

$$\begin{split} \mathrm{DC}(\gamma,\tau) &= \left\{ \alpha \in \mathbb{R} \text{ s.t. } \left| \frac{p}{q} - \alpha \right| > \frac{\gamma}{|q|^{2+\tau}} \; \forall p,q \in \mathbb{Z}, q \neq 0 \right\} \\ \mathrm{DC}(\tau) &= \bigcup_{\gamma > 0} \mathrm{DC}(\gamma,\tau) \\ \mathrm{DC} &= \bigcup_{\tau > 0} \mathrm{DC}(\tau) \end{split}$$

Elements of this set are said to satisfy a *Diophantine condition*: they are *badly approximable with rational numbers*. Prove that:

- (a) $DC(\gamma, \tau) \cap \mathbb{Q} = \emptyset$ for any $\gamma, \tau > 0$.
- (b) $DC(\gamma, \tau)$ and $DC(\tau)$ are Borel measurable.
- (c) $\mathbb{R} \setminus DC(\tau)$ is a Lebesgue-null set.
- (d) (Hard!) There exists $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ so that $\alpha \notin DC$.

Problem 2

Let X be a set and $\mathcal{E} \subset \mathcal{P}(X)$ be a family of subsets of X. Let $\langle \mathcal{E} \rangle$ denote the σ -algebra generated by \mathcal{E} . Show that

$$\langle \langle \mathcal{E} \rangle \rangle = \langle \mathcal{E} \rangle$$

Problem 3

Show that if $\int_E f = 0$ for any measurable set E, then f = 0 almost everywhere.

Problem 4

Find an example of a sequence $f_n : \mathbb{R} \to \mathbb{R}$ that converges *uniformly* to on \mathbb{R} to some function f but not in L^1 . [Recall that $f_n \to f$ uniformly on a set E if for any $\varepsilon > 0$ there exists \bar{n} so that for any $x \in E$ we have $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge \bar{n}$.]

Problem 5

A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *upper semi-continuous* if for any $x_0 \in \mathbb{R}$ we have $\limsup_{x \to x_0} f(x) \leq f(x_0)$. Show that every upper semi-continuous function is Borel-measurable.

Problem 6

Consider a function $F : \mathbb{R} \to \mathbb{R}$ that is non-decreasing, right continuous and

constant on the interval [0,1]; let μ_F be the associated Lebesgue–Stieltjes measure and m be the Lebesgue measure on $\mathbb R$. Show that there exists a Lebsegue non-measurable set that is μ_F -measurable.

2