MAT 347 The Galois Correspondence February 26, 2016

The Galois group

Definition 1. Let K/F be a field extension. The Galois group of K over F is defined as

 $Gal(K/F) = \{\phi : K \to K \mid \phi \text{ is an automorphism and } \phi(a) = a \text{ for all } a \in F\}$

We have one useful result for finding the size of the Galois group.

Proposition 1. Suppose that $K = F(\alpha)$ and let f(x) be the minimal polynomial of α . Then the size of Gal(K/F) equals the number of roots of f(x) which lie in K.

- 1. Consider the field extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$. Find the Galois group of this extension.
- 2. Consider the field extension $\mathbb{Q}(\zeta_5)/\mathbb{Q}$, where $\zeta_5 = e^{2\pi i/5}$. Find the Galois group of this extension.
- 3. Consider the field extension $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$. Find the Galois group of this extension. (We discussed this in class on Wednesday.)

Intermediate fields and subgroups

Definition 2. Let H be a subgroup of $\operatorname{Gal}(K/F)$. The fixed field of H, denoted $\operatorname{Inv}(H)$ or $\widehat{I}(H)$, consists of all the elements of K that are fixed by all the automorphisms in H. In other words,

$$\widehat{I}(H) = \{ \alpha \in K : \phi(\alpha) = \alpha \text{ for all } \phi \in H \}.$$

- 4. Show that $\widehat{I}(H)$ is a field which contains F.
- 5. If $H_1 \leq H_2$ are subgroups of $\operatorname{Gal}(K/F)$, how are $\widehat{I}(H_1)$ and $\widehat{I}(H_2)$ related?
- 6. List all the subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ for $K = \mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and find the corresponding fixed fields.

Definition 3. If M is a field such that $F \subseteq M \subseteq K$, we call M an intermediate field between F and K. We denote Gal(K/M) by $\widehat{G}(M)$.

- 7. Show that $\widehat{G}(M)$ is a subgroup of $\operatorname{Gal}(K/F)$.
- 8. If $M_1 \subseteq M_2$ are intermediate fields, how are $\widehat{G}(M_1)$ and $\widehat{G}(M_2)$ related?
- 9. Find all the intermediate fields between \mathbb{Q} and K for $K = \mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(\zeta_5), \mathbb{Q}(\sqrt{2}, \sqrt{3})$ For each intermediate field M, find $\widehat{G}(M)$.

The Galois correspondence

Note that we have defined two functions:

- \widehat{I} : {subgroups of Gal(K/F)} \longrightarrow {intermediate fields between F and K}
- $\widehat{G} \hspace{.1in}:\hspace{.1in} \{ \text{intermediate fields between } F \text{ and } K \} \longrightarrow \{ \text{subgroups of } \operatorname{Gal}(K/F) \}.$
- 10. For any intermediate field M between F and K, how are M and $\widehat{I}(\widehat{G}(M))$ related? Find an example (among ones we've seen so far) where they are not equal.
- 11. For any subgroup H of $\operatorname{Gal}(K/F)$, how are H and $\widehat{G}(\widehat{I}(H))$ related?
- 12. Find some examples (among ones we've seen so far) where the functions \widehat{G} and \widehat{I} actually *are* inverses.
- 13. In class, we discussed $K = \mathbb{Q}(\omega, \sqrt[3]{2})$ where $\omega = e^{2\pi i/3}$. We saw that $\operatorname{Gal}(K/\mathbb{Q}) = S_3$. In this case the Galois correspondence is a bijection. Find the lattice of subgroups of S_3 and the corresponding intermediate fields of K/\mathbb{Q} .