MAT 347 Computing Galois groups Arpil 1, 2016

Let $f(x) \in F[x]$ be a separable polynomial of degree n and let K be its splitting field. Let $\alpha_1, \ldots, \alpha_n \in K$ be the roots of f(x). Our goal today is to understand the Galois group G of f(x) which is defined to be G := Gal(K/F).

0.1 Discriminants

- 1. Explain how we can think of G as a subgroup of S_n .
- 2. Let

$$D = \prod_{i < j} (\alpha_i - \alpha_j)^2$$

be the discriminant of f(x). Use the fundamental theorem of Galois theory to prove that $D \in F$.

- 3. Prove that the Galois group of f(x) is contained in A_n if and only if D is the square of an element of F.
- 4. Suppose that $f(x) = x^2 + bx + c$ is a quadratic polynomial. Show that $D = b^2 4c$. Explain what happens if D is a square of an element of F.
- 5. For any f(x), can you write D in terms of the coefficients of f(x)?
- 6. Let f(x) be an irreducible cubic polynomial. Show that the Galois group is either S_3 or A_3 .
- 7. Suppose that f(x) is an irreducible cubic polynomial with only one real root. Show that its Galois group is S_3 .

0.2 A quintic polynomial

Now we consider the polynomial $f(x) = x^5 - 6x + 3$. We will show that is Galois group is S_5 and thus it is not solvable by radicals. As above let K denote the splitting field and G the Galois group.

- 8. Prove that f(x) is irreducible.
- 9. Let α be any root of f(x). Use the tower $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset K$ to deduce that 5|[K:F].
- 10. Prove that G contains an element of order 5.
- 11. Prove that G contains a 5-cycle.
- 12. Prove (using calculus) that f(x) has exactly three real roots. Deduce that G contains a transposition.
- 13. Prove that $G = S_5$.
- 14. Suppose that an irreducible degree 5 polynomial has one real root and its discriminant is a square (in \mathbb{Q}). Can you conclude that its Galois group is A_5 ?