

ASSIGNMENT 1
DUE THURSDAY JANUARY 22

- (1) Let X be a manifold. Show that the wedge product on the differential forms $\Omega^\bullet(X)$ descends to the de Rham cohomology $H_{\text{DR}}^\bullet(X)$.
- (2) (a) Let W be a vector space and let $V = W \oplus W^*$. Define a bilinear form Ω on V by

$$\Omega((w_1, \alpha_1), (w_2, \alpha_2)) = \alpha_2(w_1) - \alpha_1(w_2).$$

Show that Ω is non-degenerate and skew symmetric.

- (b) Let (V, Ω) be a symplectic vector space (ie a vector space with a skew-symmetric non-degenerate bilinear form). Let $L \subset V$ be Lagrangian. Show that V/L is canonically isomorphic to L^* .
- (c) Show that (V, Ω) is (non-canonically) symplectomorphic to $(V, L \oplus L^*)$. What extra structure is needed to make this canonical?
- (3) (a) Let X be a manifold and let E be a vector bundle on X . Show that there is short exact sequence of vector bundles on E

$$0 \rightarrow \pi^*(E) \rightarrow TE \rightarrow \pi^*(TX) \rightarrow 0$$

(Short exact sequence of vector bundles means that we have maps of vector bundles such that at each point we have a short exact sequence of vector spaces. Also, the notation $\pi^*(E)$ means pullback of vector bundles.)

- (b) Can we write the symplectic form on T^*X in a simple fashion as in (2a) above? What additional data is needed?
- (4) Do Homework 3, question 3 in Cannas da Silva.
- (5) (a) Let X be a compact manifold and let f be a smooth function. Show that the graph of df and the zero section X intersect in at least two points inside T^*X .
- (b) For which manifolds can you find a function such that they intersect in exactly two points? In general, what is a better bound?