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In these notes, we will introduce the notion of t-structures on a triangulated cateogry. The
initial motivation behind this definition has to do with the derived category Db(A ) of an abelian
category A . What structure do we need to impose on Db(A ) to recover A inside Db(A)? This is
done via introducing the notation of a t-structure, which is an additional structure on a triangulated
category. The category Db(A) has a tautological t-structure that gives rise to A.

Let X be an algebraic variety. We introduce the perverse t-structure on Db(X), which are used
to define the abelian subcategory of perverse sheaves in the derived category. Perverse sheaves
are very closely related to intersection cohomology - which is a cohomology theory defined for
singular spaces that has a Poincaré duality. We will give a both a topological definition and a
sheaf theoretic definition of intersection homology. Intersection cohomology and perverse sheaves
have applications in representation theory. For example, these play a cruicial rolein the proof of
Kazhdan-Lustig conjecture on the characters of simple modules in the BGG category O and in
the Geometric Satake correspondence.

1 t-structures and Truncation

Definition 1.1. Let T be a triangulated category (e.g. Db(A) for an abelian category A). and
let (T ≤0,T ≥0) be a pair of strictly full subcategories (subcategories that are full and closed under
isomorphism). For n ∈ Z, let

T ≤n = T ≤0[−n], T ≥n = T ≥0[−n]

Then (T ≤0,T ≥0) is called a t-structure on T if the following holds:

1. T ≤−1 ⊂ T ≤0 and T ≥−1 ⊃ T ≥0.

2. If X ∈ T ≤−1 and Y ∈ T ≥0, then Hom(X,Y ) = 0.

3. For any X ∈ T , there is a distinguished triangle A → X → B → with A ∈ T ≤−1 and
B ∈ T ≥0.

If this pair is a t-structure, then T ≤0 ∩T ≥0 is called the heart.

Definition 1.2. We say that a t−structure is

• bounded below if ∀X ∈ T , ∃n ∈ Z such that X ∈ T ≥n

• bounded above if ∀X ∈ T , ∃n ∈ Z such that X ∈ T ≤n

• bounded if it is bounded above and below

• non-degenerate if
⋂
n∈Z T ≤n =

⋂
n∈Z T ≥n = 0

Notice that it follows immediately that T ≤n ⊂ T ≤n+1 and T ≥n ⊃ T ≥n+1 from the second
condition.
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Example 1.3. Let A be an abelian category. Consider the subcategories

Db(A )≤0 =
{
X ∈ Db(A ) : Hi(X) = 0 for i > 0

}
Db(A )≥0 =

{
X ∈ Db(A ) : Hi(X) = 0 for i < 0

}
Then this pair forms a t-structure on Db(A ).

Example 1.4 (Torsion-pair t-structure, see [2]). Let A be an abelian category. A torsion pair
(T ,F ) is a pair of strictly full subcategories such that

1. Hom(T, F ) = 0 for all T ∈ T , F ∈ F

2. For any object A ∈ A , there exists a short exact sequence

0→ T → A→ F → 0

where T ∈ T , F ∈ F .

If these conditions hold, we call T a torsion class and F a torsion free class.
Now, we can get a t-structure on Db(A ) by setting

Db(A )≤0 = {F ∈ Db(A ) : Hi(F) = 0 for i > 0, H0(F) ∈ T }
Db(A )≥0 = {F ∈ Db(A ) : Hi(F) = 0 for i < −1, H−1(F) ∈ F}

Exercise: Prove this is a t-structure.

Example 1.5 (Special case of Example 1.4). Consider the category whose objects are triples
(V,W, T ) where V,W are vector spaces and T : V →W is a linear transformation and the objects
are defined in a natural way (i.e. the category of representations of the type A2 Dynkin quiver).
As we saw in Balázs’ talk [4], this is equivalent to the category of sheaves on P1 constructible with
respect to the stratification {0},P1\{0}.

Let T = {V → 0} and let F = {V → W injective }. Then (T ,F) is a torsion pair and this
(tDb(A)≤0, tDb(A)≥0) is the induced t-structure on the derived category.

For the rest of this section, we will always consider a triangulated category T with t-structure
denoted by (T ≤0,T ≥0).

Lemma 1.6.

1. X ∈ T ≤n ⇐⇒ Hom(X,Y ) = 0 for all Y ∈ T ≥n+1.

2. X ∈ T ≥n ⇐⇒ Hom(Y,X) = 0 for all Y ∈ T ≤n−1

Proof. The direction ( =⇒ ) is obvious by the definition of t-structure. For ( ⇐= ), pick a
distinguished triangle A → X → B → where A ∈ T ≤n, B ∈ T ≥n+1. Since X ∈ T ≤n, then
Hom(X,B) = 0 so that X → B is zero. Thus, this distinguished triangle splits and A ∼= X⊕B[−1].
Then the projection map p : A → B[−1] ∈ Hom(A,B[−1]). But A ∈ T ≤n ⊂ T ≤n+1 and
B[−1] ∈ T ≥n+2 so by the second condition Hom(A,B[−1]) = 0. Then p = 0 hence B[−1] = 0.
Thus A ∼= X so that X ∈ T ≤n.

Part (2) is left as an exercise.

Definition 1.7. A subcategory C of T is called stable under extensions if for every A,B ∈ C
such that there is a distinguished triangle A→ T → B →, then T ∈ C .

Lemma 1.8. For any n ∈ Z, the categories T ≤n and T ≥n are stable under extensions.

Proof. Exercise. (Hint: Construct a long exact sequence using Y ∈ T ≥n+1).

Proposition 1.9 (Truncation).

1. The inclusion T ≤n ↪→ T admits a right adjoint τ≤n : T → T ≤n.
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2. The inclusion T ≥n ↪→ T admits a left adjoint τ≥n : T → T ≥n.

3. There is a unique natural transformation δ : τ≥n+1 → τ≤n [1] s.t. for any X ∈ T , the
diagram

τ≤nX → X → τ≥n+1X → τ≤nX [1]

is a distinguished triangle. Any distinguished triangle A → X → B → with A ∈ T ≤n,
B ∈ T ≥n+1 is canonically isomorphic to this one.

In particular, τ≤bτ≥a takes values is T ≤b ∩T ≥a.

Example 1.10. Consider the natural t-structure of Db(A ). Pick X ∈ Db(A ) represented by a
complex

· · · → X−2 → X−1 → X0 → X1 → X2 → · · ·
Then τ≤n(X) is given by the chain complex

· · · → Xn−2 dn−2

−−−→ Xn−1 dn−1

−−−→ ker(dn)
dn−→ 0→ 0→ . . .

This chain complex has the same cohomology of X when i ≤ n and zero for i > n.
Similarly, τ≥n(X) is the chain complex

· · · → 0→ 0
dn−1

−−−→ coker(dn−1)
dn−→ Xn+1 dn+1

−−−→ Xn+2 → . . .

Proof of Proposition 1.9. This proof is done in 4 steps:
Step 1: Define τ≤−1 and τ≥0 and δ on objects.
For each X ∈ T , fix a distinguished triangle

AX
g−→ X

h−→ BX →

whereAX ∈ T ≤−1, BX ∈ T ≥0. Set τ≤−1(X) = AX , τ
≥0(X) = BX and δ : τ≥0(X)→ (τ≤−1X)[1]

is the third morphism in this triangle.
Step 2: Define τ≤−1, τ≥0, δ as functors by specifying what they do on morphisms.
We still need to describe that these functors do on morphisms, f : X → Y . Consider the

distinguished triangle AY
g′−→ Y

g′−→ BY → where AY and BY are the images of τ≤−1 and τ≥0

respectively. Then we have the diagram

AX X BX

AY Y BY

g

p

h

f q

g′ h′

By the Lemma of unicity of triangles from Hyungseop’s talk [7], we know that there exist a unique
p and q that make the diagram commute. So we have defined how τ≤−1 and τ≥0 act on morphisms
and in fact, we have shown that δ is a natural transformation

Step 3: Show that τ≤−1 is the right adjoint of the inclusion map T ≤−1 ↪→ T and τ≥0 is the
left adjoint of the inclusion map T ≥0 ↪→ T .

Consider Z ∈ T ≤−1. Then we get the long exact sequence

· · · → Hom(Z, (τ≥0X)[−1]))→ Hom(Z, τ≤−1(X))→ Hom(Z,X)→ Hom(Z, τ≥0X)→ . . .

The first and last terms are zero, so that Hom(Z, τ≤−1(X)) ∼= Hom(Z,X) and hence τ≤−1 is the
right adjoint to the inclusion.

Exercise: Prove that τ≥0 is the left adjoint of T ≥0 ↪→ T .
Step 4: For general n ∈ Z:
Set τ≤n(X) = (τ≤−1(X[n + 1]))[−n − 1] and τ≥n(X) = (τ≥0(X[n]))[−n]. The proof that

these functors are the right and left adjoints of the natural inclusion maps is similar to the above
case.
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Lemma 1.11. For any a, b ∈ Z such that a ≤ b, there are natural isomorphisms

1. τ≤aτ≤b → τ≤a

2. τ≥b → τ≥bτ≥a

3. τ≥aτ≤b → τ≤bτ≥a

Theorem 1.12 (Theorem 1.8.10 of [1]). The heart C := T ≤0∩T ≥0 of a t-structure is an abelian
category.

To prove this, we need to show that every morphism has kernel and cokernel, and that every
monomorphism is the kernel of its cokernel and the dual claim holds for epimorphisms. We first
prove the following lemma, which shows that every morphism in C has a kernel and cokernel.

Lemma 1.13. Let f : X → Y be a morphism in the heart of the t-structure on T . Consider the
distinguished triangle

X
f−→ Y

g−→ Z
k−→ X [1]

(i) Then Z ∈ T ≤0 ∩T ≥−1 and τ≤0(Z[−1]), τ≥0Z ∈ C .

(ii) The composition τ≤0(Z[−1])→ Z[−1]
−k[−1]−−−−→ X is the kernel of f in C .

(iii) The composition Y
g−→ Z → τ≥0Z is the cokernel of f in C .

Proof. For (1), we know that Y ∈ T ≤0 ∩ T ≥0 ⊂ T ≤0 ∩ T ≥−1 and X[−1] ∈ T ≤−1 ∩ T ≥−1 ⊂
T ≤0 ∩T ≥−1. Since these categories are stable under extensions, then Z ∈ T ≤0 ∩T ≥−1.

Then Z ∈ T ≤0 and so τ≤0Z = Z. If we apply τ≥0, we get that τ≥0Z = τ≥0τ≤0Z = τ≤0τ≥0Z,
which takes values in C . Similarly, Z[−1] ∈ T ≤1 ∩T ≥0 so τ≤0Z[−1] = τ≤0τ≥0Z[−1] ∈ C .

For (2), consider X ′ ∈ C . Then we obtain the long exact sequence

· · · → Hom(X ′, Y [−1])→ Hom(X ′, Z[−1])→ Hom(X ′, X)→ Hom(X ′, Y )→ . . .

Since Y ∈ T ≤0 ∩ T ≥0 then Y [−1] ∈ T ≤1 ∩ T ≥1 so that Y [−1] ∈ T ≥1. Since X ′ ∈ T ≤0 then
Hom(X,Y [−1]) = 0.

Suppose g : X ′ → X is a morphism of C such that f ◦g = 0. Then since Hom(X,Y [−1]) = 0, g
factors through a unique morphism g′ : X ′ → Z[−1]. Since X ′ ∈ T ≤0 then as τ≤0 is the adjoint
of the inclusion, then there is a unique map g′′ : X → τ≤0(Z[−1]) such that g′ factors through
g′′.

Then we conclude τ≤0(Z[−1])→ Z[−1]→ X is the kernel of f .
Similarly, we can find the cokernel as Y → Z → τ≥0Z.

Proof of Theorem 1.12. All that is left is to show that is that every monomorphism is the kernel
of its cokernel and that every epimorphism is the cokernel of its kernel.

Suppose that f : X → Y is a monomorphism in C . Complete this morphism to a distinguished
triangle

X
f−→ Y

g−→ Z

By the previous lemma, τ≤0(Z[−1]) → Z[−1] → X is the kernel of f and since f is a monomor-
phism, this is zero. Thus, τ≤0(Z[−1]) = 0 and hence Z ∼= τ≥0Z. Then Z ∈ C and g is a morphism
in C , where g is the cokernel of f .

We have the distinguished triangle

Y
g−→ Z → X[1]

−f [1]−−−→

so that the kernel of g is the composition τ≤0(X)→ X
f−→ Y . But τ≤0(X) = X so that the kernel

of g is f .
Similarly, we can prove that every epimorphism is the cokernel of its kernel.
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Remark 1.14. One of the motivations of defining a t-structure was to recover the abelian category
A from its derived category D(A ). In this case, the heart C of the natural t-structure on D(A )
is equivalent to A .

Definition 1.15. Let C = T ≤0 ∩ T ≥0 be the heart of a t-structure on T . The zeroth t-
cohomology functor is defined to be

tH0 = τ≤0τ≥0 : T → C

The nnt t-cohomology functor is tHn(X) = tH0(X [n]).

Example 1.16. Consider the tautological t-structure on Db
c(A ). For a complex X ∈ Db(A ),

then tH0(X) = τ≤0(τ≥0X) is just the complex

· · · → 0→ H0(X)→ 0→ . . .

Proposition 1.17. The functor tH0 : T → C is a cohomological functor.

Corollary 1.18. Let X
f−→ Y

g−→ Z be two morphisms in C . The following conditions are
equivalent:

1. The sequence 0→ X
f−→ Y

g−→ Z → 0 is a short exact sequence

2. There exists a morphism h : Z → X[1] in T such that X
f−→ Y

g−→ Z
h−→ is a distinguished

triangle.

If these conditions hold, then h is unique.

This follows since we can obtain 1) from 2) by applying tH0 which sends distinguished triangles
to exact sequences.

Definition 1.19. A triangulated function F : T1 → T2 is left t-exact if F (T ≥01 ) ⊂ T ≥02 and

right t-exact of F (T ≤01 ) ⊂ T ≤02 . The functor F is called t-exact if it is both left and right t-exact.

Lemma 1.20. Let T1 and T2 be triangulated categories equipped with t-structures and let C1 and
C2 denote their hearts. Let F : T1 → T2 be a triangluated functor.

1. If F is left t-exact, then the functor tH0 ◦ F : C1 → C2 is left exact.

2. If F is right t-exact, then the functor tH0 ◦ F : C1 → C2 is right exact.

Example 1.21 (Triangulated category which is not the derived category of the heart). Consider
the category Db

locf(P1). The heart C of the tautological t-structure is

C ∼= Loc(P1)

But Loc(P1) ∼= Rep(π1(P1)) ∼= Rep(Z) ∼= Rep({1}) ∼= VectC. Then Db(C) ∼= Db(Vect).
But in Db

locf(P1), Ext2Db
c(P1)(CP1 ,CP1) = RHom(CP1 ,CP1) = RΓ(CP1) = H2(P1) = C while

Ext2Vect(V, V ) = 0 for every vector space. Thus Db
locf(P1) 6∼= Db(C).

2 Perverse Sheaves

Definition 2.1. Let X be a variety. The perverse t-structure on X is the t-structure on Db
c(X)

given by

pDb
c(X)≤0 =

{
F ∈ Db

c(X) : ∀i, dim suppHi(F) ≤ −i
}

pDb
c(X)≥0 =

{
F ∈ Db

c(X) : ∀i,dim suppHi(DF) ≤ −i
}

The heart of this t-structure is Perv(X) = pDb
c(X)≤0 ∩ pDb

c(X)≥0, i.e. . Objects in the heart are
called perverse sheaves.
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Remark 2.2. In particular, this means that when F ∈ Perv(X), then Hi(F) = 0 for i > 0 while
Hi(DF) = 0 for i < 0

We will prove this is indeed a t-structure in Theorem 2.10.

Remark 2.3. Given this definition of the perverse t-structure, then

F ∈ pDb
c(X)≥0 ⇐⇒ DF ∈ pDb

c(X)≤0

Definition 2.4. Let X be a variety. A good stratification is a stratification (Xs)s∈S such that
for any local system of finite type L on Xs, if js : XS ↪→ X is the inclusion, then the object
js∗L ∈ Db(X) is constructible with respect to S .

Remark 2.5. Any stratification of X can be refined by a good stratification.

Example 2.6 (Normal crossing stratification). Let Z ⊂ X be a divisor with simple normal
crossings and components Z1, . . . , Zk. As in Balázs’s talk, the normal crossing stratification under
the index set S = {I ⊂ [k]} is given by XI = {x ∈ X : x ∈ Zi ⇐⇒ i ∈ I}. This stratification is
a good stratification by Lemma 3.5.8 of [1].

For a good stratification S on X, we have an induced t-structure on Db
S (X):

pDb
S (X)≤0 = pDb

c(X)≤0 ∩Db
S (X)

pDb
S (X)≥0 = pDb

c(X)≥0 ∩Db
S (X)

Example 2.7. For X a smooth connected variety and S a trivial stratification. Then PervS(X) =
Locft(X)[dimX].

The perverse t-structure of Db
S (X) is closely related to the standard t-structure on Db

locf(Xs)
of the strata of X in the following way:

Lemma 2.8. Let X be a variety and let (Xs)s∈S be a good stratification. For each s ∈ S , let
js : Xs ↪→ X be the inclusion map.

1. Suppose F ∈ Db
c(X) is constructible with respect to S . Then

F ∈ pDb
c(X)≤0 ⇐⇒ j∗sF ∈ Db

locf(Xs)
≤− dimXs ∀s ∈ S

2. Let F ∈ Db
c(X) and suppose DF is constructible with respect to S . Then

F ∈ pDb
c(X)≥0 ⇐⇒ j!sF ∈ Db

locf(Xs)
≥− dimXs ∀s ∈ S

Proof. We will prove (1).
( ⇐= ) Suppose that j∗sF ∈ Db

locf(Xs)
≤− dimXs , i.e. Hi(j∗sF) = 0 for i > −dimXs for every

s ∈ S . So if Hi(j∗sF) 6= 0, then i ≤ −dimXs. Then

dim suppHi(F) = max{dimXs : j∗sH
i(F) 6= 0}

but since j∗s is exact, then j∗sH
i(F) = Hi(j∗sF) and dim suppHi(F) ≤ −i. Hence F ∈ pDb

c(X)≤0.
For ( =⇒ ), suppose that F ∈ pDb

c(X)≤0. Then dim suppHi(F) ≤ −i for every i. By definition

dim suppHi(j∗sF) ≤ dim suppHi(F) ≤ −i

Since j∗sF ∈ Db
locf(Xs), then Hi(j∗sF) is a local system so if it has nonzero support, then

dim suppHi(j∗sF) = dimXs

Combining these facts, we get that dim suppHi(j∗sF) = dimXs ≤ −i. Thus if −i < dimXs, this
contradicts that F ∈ pDb

c(X)≤0 so that Hi(j∗sF) = 0. Thus F ∈ Db
locf(Xs)

≤− dimXs .
Exercise: prove (2).
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Similarly, we can relate the perverse t-structure of Db
c(X) to the standard t-structure.

Lemma 2.9. Let X be a variety. We have

Db
c(X)≤− dimX ⊂ pDb

c(X)≤0 ⊂ Db
c(X)≤0

Db
c(X)≥0 ⊂ pDb

c(X)≥0 ⊂ Db
c(X)≥− dimX

Proof. If F ∈ Db
c(X)≤− dimX , we need to show dim suppHi(F) ≤ −i. We know Hi(F) = 0 for

i ≥ −dimX, or equivalently for −i ≤ dimX. Then dim suppHi(F) = 0 ≤ −i for i ≥ −dimX. If
i < −dimX, then −i > dimX and so dim suppHi(F) ≤ dimX < −i holds automatically. Thus
F ∈ pDb

c(X)≤0.
For G ∈ pDb

c(X)≥0, then for all F ∈ pDb
c(X)≤−1, Hom(F ,G) = 0. In particular, by the

first inclusion, Hom(F ,G) = 0 for all F ∈ Db
c(X)≤− dimX−1 and hence by Lemma 1.6, G ∈

Db
c(X)≥− dimX .

Exercise: Prove pDb
c(X)≤0 ⊂ Db

c(X)≤0 and Db
c(X)≥0 ⊂ pDb

c(X)≥0.

Theorem 2.10. Let X be a variety.

1. The pair (pDb
c(X)≤0, pDb

c(X)≥0) is a t-structure on Db
c(X).

2. Let (Xs)s∈S be a good stratification on X. Then the pair (pDb
S (X)≤0, pDb

S (X)≥0) is a
t-structure on Db

S (X).

To prove this, we need to show the three conditions for being a t-structure hold:

(1) pDb
c(X)≤−1 ⊂ pDb

c(X)≤0 and pDb
c(X)≥−1 ⊃ pDb

c(X)≥0

(2) If F ∈ pDb
c(X)≤−1 and G ∈ pDb

c(X)≥0, then Hom(F ,G) = 0.

(3) For any F ∈ Db
c(X), there is a distinguished triangle A→ F → B → with A ∈ pDb

c(X)≤−1

and B ∈ pDb
c(X)≥0.

The first condition (1) is obvious from the definition. We will use the following lemma to prove
(2):

Lemma 2.11. Let F ∈ Db
c(X)≤0. For all G ∈ pDb

c(X)≥1, we have Hom(F ,G) = 0.

Proof. We can use an induction argument using the truncation functor to reduce to the case when
F ∼= Hj(F [−k])

Since G ∈ pDb
c(X)≥1, then we can choose a good stratification of X such that DG and F are

constructible. Call this stratification S .
Now, we proceed by induction on the size of S . Let i : Xt ↪→ X be the inclusion of the closed

stratum and j : X\Xt ↪→ X be the inclusion of the complementary open. Using Theorem 3.34
from Roger’s talk, we have the distinguished triangle

RHom(i∗F , i!G)→ RHom(F ,G)→ RHom(j∗F , j∗G)→

Then we have the long exact sequence

· · · → Hom(i∗F , i!G)→ Hom(F ,G)→ Hom(j∗F , j∗G)→ . . .

By induction, Hom(j∗F , j∗G) = 0. We will show that the first term is also zero.
If i∗F = 0, then Hom(i∗F , i!G) = 0. Suppose that i∗F 6= 0, then Xt ⊂ suppHi(F) and hence

dimXt ≤ dim suppHi(F) ≤ −k. Then dimXt ≤ −k.
Since DG is constructible and G ∈ pDb

c(X)≥1 then by Lemma 2.8, i!G ∈ Db
locf(Xt)

≥− dimXt+1.
But i∗F is concentrated in degree k since F is but i!G is above degree −dimXt+ 1 > k and hence
Hom(i∗F , i!G) = 0 so that Hom(F ,G) is also zero.
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To prove the last condition (3), we will need to construct a distinguished triangle

F ′ → F → F ′′ →

where F ′ ∈ pDb
c(X)≤−1, F ′′ ∈ pDb

c(X)≥0. To construct these complexes, we need to understand
how open and closed embeddings behave with respect to the perverse t-structure.

Lemma 2.12. Let j : U ↪→ X be an open embedding and let i : Z ↪→ X be a closed embedding.

1. j∗(pDb
c(X)≤0) ⊂ pDb

c(U)≤0 and j∗(pDb
c(X)≥0) ⊂ pDb

c(U)≥0.

2. j!(
pDb

c(U)≤0) ⊂ pDb
c(X)≤0

3. j∗(
pDb

c(U)≥0) ⊂ pDb
c(X)≥0

4. i∗(
pDb

c(Z)≤0) ⊂ pDb
c(X)≤0 and i∗(

pDb
c(Z)≥0) ⊂ pDb

c(X)≥0

5. i∗(pDb
c(X)≤0) ⊂ pDb

c(Z)≤0

6. i!(pDb
c(X)≥0) ⊂ pDb

c(Z)≥0.

Proof. For part (1), let F ∈ pDb
c(X)≤0, G ∈ pDb

c(X)≥0. Since j∗ is t-exact, and doesn’t increase
the dimension of the support then

dim suppHi(j∗F) = dim supp j∗Hi(F) ≤ dim suppHi(F) ≤ −i

so that j∗F ∈ pDb
c(X)≤0.

Since j∗ also commutes with D,

dim suppHi(D(j∗G)) = dim suppHi(j∗(DG)) ≤ dim suppHi((DG)) ≤ −i

so that j∗G ∈ pDb
c(X)≥0. Similarly, part (4) holds because Di∗ = i∗D.

For (2), let F ∈ pDb
c(X)≤0. Since j! is t-exact and does not change the dimension of the

support, then
dim suppHi(j!F) = dim suppHi(F) ≤ −i

so that j!F ∈ pDb
c(X)≤0. Similarly, part (5) holds.

For (3), suppose F ∈ pDb
c(X)≥0. Then by Theorem 2.2 part (3) of [7], D ◦ j∗ = j! ◦ D so that

Dj∗F = j!DF . So by using part (2),

dim suppHi(Dj∗F) = dim suppHi(j!DF) = dim suppHi(DF) ≤ −i

Hence j∗F ∈ pDb
c(X)≤0. Similarly, part (6) holds.

We are now ready to prove the theorem.

Proof of Theorem 2.10. To prove the theorem, all that is left to show is condition (3).
We will first construct an object G which we use to construct F ′. Then, using an octahedral

diagram, we will construct F ′′. Finally, we prove that these objects F ′,F ′′ form the distinguished
triangle we want.

We proceed by noetherian induction. Let S be a good stratification such that F and DF are
constructible. Let j : Xt ↪→ X be an open stratum and i : X\Xt ↪→ X be the closed complement.
Denote dimXt by dt.

Step 1: Construct G.
Db

locf(Xt) has a natural t-structure. By definition, j∗tF ∈ Db
locf(Xt). Then using the t-structure,

we have the distinguished triangle

τ≤−dt−1j∗tF → j∗tF → τ≥−dtj∗tF →

Since jt! is t-exact for this t-structure, then we obtain the exact sequence
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jt!τ
≤−dt−1j∗tF → jt!j

∗
tF → jt!τ

≥−dtj∗tF →

By composing with the natural map jt!j
∗
tF → F defined in Roger’s talk [3], we can complete

the distinguished triangle to obtain G ∈ Db
c(X).

jt!τ
≤−dt−1j∗tF → F → G →

If we apply j∗t to this exact sequence, then we get

τ≤− dimXt−1j∗tF → j∗tF → j∗t G →

and by the uniqueness of the distinguished triangle, then j∗t G ∼= τ≥− dimXtj∗tF .
Step 2: Construct F ′′.
Since G ∈ Db

c(X), then i!G ∈ Db
c(Z). By induction, (pDb

c(Z)≤0,pDb
c(Z)≥0) is a t-structure. In

particular, we have the distinguished triangle

pτ≤−1i!G → i!G → pτ≥0i!G →

By applying the t-exact functor i∗, we have

i∗
pτ≤−1i!G → i∗i

!G → i∗
pτ≥0i!G →

Then composing with the natural map i∗i
!G → G, we find F ′′ ∈ Db

c(X) such that the following is
a distinguished triangle

i∗
pτ≤−1i!G → G → F ′′

Apply i! to conclude that i!F ′′ ∼= pτ≥0i!G.
Now, we can compose the morphism F → G → F ′′ to get a map F → F ′′. We will show that

F ′′ ∈ pDb
c(X)≥0 in Step 4.

Step 3: Construct F ′.
There exists a F ′ such that we can complete F → F ′′ to the distinguished triangle

F ′ → F → F ′′ →

We will now use the octahedral axiom of a triangulated category to show that jt!τ
≤dim dt−1j∗tF →

F ′ → i∗
pτ≤−1i!G → is a distinguished triangle.

Octahedral axiom Consider three distinguished triangles

X
a−→Y a′−→ A

a′′−−→

X
b−→Z b′−→ B

b′′−→

Y
c−→Z c′−→ C

c′′−→

such that b = c ◦ a. Then there exist morphisms f : A→ B, g : B → C such that

A
f−→ B

g−→ B
a′[1]◦c′′−−−−−→ A[1]

is a distinguished triangle and b′′ ◦ f = a′′, g ◦ b′ = c′, b′ ◦ c = f ◦ a′, a[1] ◦ b′′ = c′′ ◦ g. This gives
the octahedral diagram:

A C

Y

X Z

a′[1]c′′

a′′ c′
c′′a′

c

b

a

A C

B

X Z

a′[1]c′′

a′′

f

c′

b′′

g

b
b′

9



where  are the maps +1.
Then our distinguished triangles fit inside the diagram

jt!τ
≤−dt−1j∗tF i∗

pτ≤−1i!G

G

F F ′′

jt!τ
≤−dt−1j∗tF i∗

pτ≤−1i!G

F ′

F F ′′

so that the following is a distinguished triangle:

jt!τ
≤− dimXt−1j∗tF → F ′ → i∗

pτ≤−1i!G

Step 4: Show that F ′ ∈ pDb
c(X)≤−1.

First, consider
jt!τ
≤− dimXt−1j∗tF → F ′ → i∗

pτ≤−1i!G

Then since pτ≤−1i!G ∈ pDb
c(Z)≤−1 by Lemma 2.12, then the right term is in pDb

c(X)≤−1.
Similarly, τ≤− dimXt−1j∗tF ∈ Db

locf(X)≤− dimXt−1 so by Lemma 2.8 then jt!τ
≤− dimXt−1j∗tF ∈

pDb
c(X)≤−1.
Claim: pDb

c(X)≤−1 is stable under extensions (see Definition 1.7).
Consider A,C ∈ pDb

c(X)≤−1 and consider the distinguished triangle A → B → C. Then for
the long exact sequence of cohomology

· · · → Hi−1(C)→ Hi(A)→ Hi(B)→ Hi(C)→ Hi+1(A)→ · · ·

Since dim suppHi(A) ≤ −i− 1 and dim suppHi(C) ≤ −i− 1, by exactness dim suppHi(B) must
also be ≤ i− 1.

Therefore, F ′ ∈ pDb
c(X)≤−1.

Step 5: Show that F ′′ ∈ pDb
c(X)≥0.

We will show that j!sF ′′ ∈ Db
locf(Xs)

≥− dimXs for every s ∈ S . Then by Lemma 2.8 F ′′ ∈
pDb

c(X).
First, for s = t, we have the distinguished triangle

i∗
pτ≤−1i!G → G → F ′′ →

By applying j!t, the left term becomes zero so that j!tF ′′ ∼= j!tG = j∗t G but we showed j∗t G ∼=
τ≥− dimXtj∗tF which is in Db

locf(Xt)
≥− dimXt .

For s 6= t, then js factors as Xs

j′s
↪−→ X\Xt

i
↪−→ X. Then js! = (j′s)

!i! so

j!sF ′′ = (j′s)
!i!F ′′ ∼= (j′s)

! pτ≥0i!G

Now we can apply induction to show the (j′s)
! pτ≥0i!G ∈ Db

locf(X)≥− dimXs .

Definition 2.13. A Serre subcategory T of an abelian category A is a full subcategory such that
for any exact sequence 0→M ′ →M →M ′′ → 0, we have M ∈ T ⇐⇒ M ′,M ′′ ∈ T .

Proposition 2.14. Let i : Z ↪→ X be the inclusion of a closed subvariety. The functor i∗ induces
an equivalence of categories

Perv(Z)→ {F ∈ Perv(X) : suppF ⊂ Z}

Moreover, the right-hand side is a Serre subcategory of Perv(X).
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Proof. The inverse of i∗ is given by i∗ then the equivalence is a consequence of Lemma 2.12. To
show Perv(Z) is a Serre subcategory, let 0→ F ′ → F → F ′′ → 0 be a short exact sequence.

Suppose F ′,F ′′ ∈ Perv(Z). Then clearly suppF ⊂ Z.
Suppose F ∈ Perv(Z). Let U = X\Z and let i : U ↪→ X be the open embedding. Then by

Lemma 2.12, i∗ is t-exact so the following sequence is a short exact sequence in Perv(U):

0→ i∗F ′ → i∗F → i∗F ′′ → 0

But i∗G = G|U and F|U = 0 since it is supported on Z. Then it follows that F ′|U = F ′′|U = 0 so
that F ,F ∈ PervZ.

Lemma 2.15. For any two objects F ∈ pDb
c(X)≤0 and G ∈ pDb

c(X)≥0, we have RH om(F ,G) ∈
Db
c(X)≥0.

Proof. We will prove this using noetherian induction.
Choose a stratification of X such that both F and DF are constructible. Let j : Xs ↪→ X

be an inclusion of an open stratum of this stratification. Let i : X \Xs ↪→ X. Then by Lemma
2.8, we have that j∗F ∈ Db

locf(U)≤− dimU and j∗G ∈ Db
locf(U)≥− dimU . Then RH om(j∗F , j∗G) ∈

Db
c(U)≥0.

Consider the distinguished triangle

i∗i
!RH om(F ,G)→ RH om(F ,G)→ j∗j

∗RH om(F ,G)→

By Lemma 4.8 of Roger’s talk, we know that j∗RH om(F ,G) = RH om(j∗F , j∗G), and since j is
an open inclusion, j! ∼= j∗. Using the dual projection formula from Hyungseop’s talk [7], we can
get the distinguished triangle

i∗RH om(i∗F , i!G)→ RH om(F ,G)→ j∗RH om(j∗F , j∗G)→

But j∗ is the right derived functor of j∗ andRH om(j∗F , j∗G) ∈ Db
c(U)≥0 so that j∗RH om(j∗F , j∗G) ∈

Db
c(X)≥0 as well.

By Lemma 2.12 we have i∗F ∈ pDb
c(X\Xs)

≤0 and i!G ∈ pDb
c(X\Xs)

≥0. Here we use induction
to conclude that RH om(i∗F , i!G) ∈ Db

c(X \ Xs)
≥0. Since i∗ is the right derived functor of i∗,

then i∗RH om(i∗F , i!G) ∈ Db
c(X)≥0 as well. Hence the middle term of the distinguished triangle

is also in Db
c(X)≥0, which is what we wanted to prove.

The next four results tell us which functors on Db(X) are t-exact for the perverse t-structure.

Lemma 2.16. The Verdier duality functor D : Db
c(X)op → Db

c(X) is a t-exact for the perverse
t-structure.

Proof. We need to show that D
(
pDb

c(X)op
≥0
)
⊂ pDb

c(X)≥0 and D
(
pDb

c(X)op
≤0
)
⊂ pDb

c(X)≤0.

But by definition

F ∈ pDb
c(X)

≥0 ⇐⇒ DF ∈ pDb
c(X)

≤0

so that D is obviously left t-exact.
But if DF ∈ pDb

c(X)≥0, then D2F ∈ pDb
c(X)≤0 but D2F ∼= F so that the Verdier duality

functor is also right t-exact.

Proposition 2.17. Let f : X → Y be a finite morphism. The functor f∗ : Db
c(X) → Db

c(Y ) is
t-exact for the perverse t-structure.

Proof. Exercise.

Lemma 2.18. Let X be a variety and let L be a local system of finite type on X. The functor
(−)⊗ L : Db

c(X)→ Db
c(X) is t-exact for the perverse t-structure.

Proof. Exercise.

11



Lemma 2.19. The functor � is t-exact for the perverse t-structure

Proof. Exercise.

Example 2.20. As in Example 1.4, let S be the stratification of P1 where S = {{0},A1} and let
j0 : {0} ↪→ P1 and jA1 : A1 ↪→ P1 be the inclusions. We will show that the torsion-pair t-structure
on D(ShS(P1)) is equivalent to the perverse t-structure.

The heart C of the torsion-pair t-structure is

C =
{

(V• →W•) : H0 (V• →W•) = V → 0, H1 (V• →W•) = V ↪→W
}

As objects, these are just the diagrams

· · · 0 V−1 V0 0 · · ·

· · · 0 W−1 0 0 · · ·

and the morphisms are still quasi-isomorphism of the chains.
Consider the perverse t-structure on P1 and suppose F ∈ Perv(P1).
Then F ∈ pDb

S(P1)≤0 so by Lemma 2.8, then

j∗0F ∈ Db
locf({0})≤0 j∗A1F ∈ Db

locf(A1)≤−1

Since j∗0F = V•, then we have that Hi(V•) = 0 for i > 0. Since j∗A1F = W•, then Hi(W ) = 0 for
i > −1.

Again, as F ∈ pDb
S(P1)≥0 so by Lemma 2.8, then

j!0F ∈ Db
locf({0})≥0 j!A1F ∈ Db

locf(A1)≥−1

Since jA1 is an open embedding, j!A1 = j∗A1 . Hence Hi(W ) = 0 if i < −1.
Claim: For F = (V• →W•) ∈ Db

S(P1), Hi(j!0F) = ker(Hi(V•)→ Hi(W•))⊕coker(Hi+1(V•)→
Hi+1(W•)).

Proof. Exercise: Hint use adjunction or spectral sequences.

Since Hi(V ) = 0 for i > 0, then Hi(j!0F) = 0 for i > 0 and hence the only possibly nonzero
term is H0(j!0F) since j!0F ∈ Db

locf({0})≥0.
Consider H−1(j!0F) = ker(H−1(V•) → H−1(W•)) = 0. Then H−1(V•) ↪→ H−1(W•) must be

injective. Thus these t-structures are equivalent.

2.1 Intersection homology theory

2.1.1 Intersection Homology following [5]

Following [5] and [8], we will define the intersection homology of algebraic varieties. This homology
theory is a homology on singular spaces that satifies the Poincaré duality, whereas the usual
singular homology does not.

Let X be a variety. Let (Xs)s∈S be a stratification of X and suppose that X has a triangulation
such that each Xs is a union of simplices. We will consider simplicial chains on X.

Let CTi (X) be the set of all locally finite simplicial i-chains on X with respect to the trian-
gulation T , which is the set of formal linear combinations ξ =

∑
σ an i-chain ξσσ where for every

x ∈ X, there exists an open set Ux with x ∈ Ux such that the set {ξσ : ξσ 6= 0, σ−1(Ux) 6= ∅} is
finite.

Definition 2.21. For a locally finite ξ =
∑
σ ξσσ ∈ CTi (S), the support |ξ| of ξ is the union of

the closures of all such σ such that ξσ 6= 0.
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An intersection i-chain on X with respect to T is a (dimCX − i)-chain ξ ∈ CT(dimCX−i)(X)
such that

dimR(|ξ| ∩Xs) ≤ −i+ dimCXs − 1

dimR(|∂ξ| ∩Xs) ≤ −i+ dimCXs − 2

for s ∈ S such that dimCXs ≤ dimCX − 1.
The set of all intersection i-chains with respect to T is denoted ICiT (X) ⊂ CT(dimCX−i)(X). By

taking the direct limit under refinement of triangulations of X, we obtain the space ICi(X) the
set of intersection i-chains of X.

The boundary maps in for the simplicial chains restrict to maps on the intersection chains so
that we have a complex IC•(X). Now we can define the intersection homology groups.

Definition 2.22. The ith intersection homology group of X is

IHi(X) =
ker(ICi(X)

∂−→ ICi−1)

coker(ICi+1(X)
∂−→ ICi)

These groups are nonzero for i = −dimCX, . . . , dimCX.

Remark 2.23. Intersection homology theory can be defined in a more general setting, in particular
when X is a psuedomanifold.

2.1.2 The IC sheaf defined in [6]

In their next paper [6], Goresky and MacPherson defined the IC sheaf as an element of Db(X),
we will denote it by ICX .

We have defined the complex IC•(X). To turn this into a complex of sheaves, for every
V ⊂ U open we need a restriction map from ICiX(U) → ICiX(V ). The natural map goes from
ICi(V )→ ICi(U) so we need to use barycentric subdivision to define this restriction map.

Let V ⊂ U and consider an i-simplex σ ∈ ICi(U). We want to define σ|V =
∑
τ∈J τ for some

set of simplices J ⊂ ICi(V ).
If im(σ) ⊂ V set J = {σ}. If im(σ) 6⊂ V , preform a barycentric subdivision of σ and consider

every τ in the subdivision of σ. If im(τ) ⊂ V , then add τ to the set J . If im(τ) 6⊂ V , then preform
a barycentric subdivision of τ and repeat the process of adding i-simplicies of this subdivion to J
if their image is in V and preforming a barycentric subdivision if their images are not in V .

In this way, we define J and so we set σ|V =
∑
τ∈J τ . For arbitrary ξ ∈ IC•(X), let ξ|V =∑

σ∈ICi(X) ξσσ|V .
We can define the ICX sheaf by

ICiX(U) = ICi(U)

with restriction map defined above. This commutes with the boundary map on chains (∂ξ)|V =
∂(ξ|V ) so that we have a boundary operator on this sheaf. Thus we have a complex of sheaves
IC•X .

Lemma 2.24. The IC sheaves ICiX are soft for all i ≤ 0 so that

H•(X, IC•X) = IH•(X,C)

In the following section, we will we that IC•(X) lies in Perv(X) when X is complex algebraic
variety.
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2.1.3 IC sheaves

In this section, we give a sheaf theoretic definition of the IC sheaf, without using topology.

Definition 2.25. Let h : Y ↪→ X be a locally closed embedding. The intermediate-extension
functor is the functor

h!∗ : Perv(Y )→ Perv(X)

given by
h!∗(F) = im(pH0(h!F)→ pH0(h∗F))

Remark 2.26. By definition, there are morphisms pH0(h!F)→ h!∗(F) and h!∗(F)→ pH0(h∗F).

Definition 2.27. Let X be a variety, Y ⊂ X a smooth, connected, locally closed subvariety and
let h : Y ↪→ X be the inclusion. Let L be a local system of finite type on Y . The intersection
cohomology complex associated to (Y,L) is the perverse sheaf

IC(Y,L) = h!∗(L[dimY ])

Remark 2.28. Recall that L[dimY ] is perverse so that h!∗ is indeed a map from Perv(Y ).

The main goal of this section is to prove the following theorem.

Theorem 2.29 (Theorem 4.2.17 of [1]).

1. If Y ⊂ X is a smooth, connected locally closed subvariety and L is an irreducible local system
on Y , the IC(Y,L) is a simple object in Perv(X). We will call these simple intersection
cohomology complexes.

2. Every perverse sheaf admits a finite filtration whose subquotients are simple intersection
cohomology complexes.

3. Every simple object in Perv(X) is of the form described in 1.

Example 2.30. ConsiderX smooth, connected and consider the local system CX . Then IC(X,CX) =
CX [dimX].

Example 2.31. Consider P1 with the standard stratification {{0},A1}. We consider the locally
closed subvarieties {0},A1. Then we have the simple intersection cohomology complexes:

IC({0},C) = j0!∗(C) = C0 since j0 is proper

IC(A1,CA1) = CP1 [1] by Example 2.30

which are, respectively, the following objects

0 C

0

C 0

C

1

Example 2.32. Let G be an algebraic group, let B ⊂ G be a borel subgroup. Then G/B has
the Bruhat stratification, with strata BwB/B ∼= C`(w). The simple cohomology complexes are
IC(BwB/B,C) = h!∗C[`(w)]. The category Perv(X) is equivalent to the BGG category O.

The following two lemmas tell us why we should consider the intermediate-extension functor.

Lemma 2.33. Let h : Y ↪→ X be a locally closed embedding.

1. For F ∈ Perv(Y ), there is a natural isomorphism h∗h!∗F ∼= F .

2. For F ∈ Perv(Y ), the object h!∗F has no nonzero subobjects or quotients supported on Y \Y .
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Proof. For (1), let F ∈ Perv(Y ). Without loss of generality, we can assume that X = Y as
supph∗F , supph!F ⊂ Y . Now h is an open embedding.

h∗h!∗F = h∗(im(pH0(h!F)→ pH0(h∗F)))

= im(h∗ pH0(h!F)→ h∗ pH0(h∗F)), [since h∗ is t-exact by Lemma 2.12]

= im(pH0(h∗h!F)→ pH0(h∗h∗F))

Since h is an open embedding, then h∗h!F ∼= h∗h∗ ∼= F and pH0(F) ∼= τ≥0τ≤0F ∼= F since F
is a perverse sheaf. So

h∗h!∗F ∼= im(F id−→ F) = F

For (2), we will let Z = X\Y and let i : Z ↪→ X be the inclusion map. We will show that h!∗F
has no quotients supported on Z, and the case of subobjects will follow from Verdier duality.

Suppose that G ∈ Perv(X) such that G is a quotient of h!∗F , i.e. there is a surjective
map h!∗F → G. Consider the natural map pH0(h!F) → h!∗F , then we have a surjective
map pH0(h!F) → G. But by Lemma 2.12, h!F ∈ pDb

c(X)≤0 so that τ≤0h!F ∼= h!F and
hence pH0(h!F) ∼= τ≥0h!F . Then this surjective map pH0(h!F) → G is in Hom(τ≥0h!F ,G) ∼=
Hom(h!F ,G) where the latter isomorphism holds by the adjunction property of τ≥0.

But by Prop 2.14, there exists H ∈ Perv(Z) such that G ∼= i∗H so that this map is in

Hom(h!F , i∗H) ∼= Hom(F , h!i∗H)

by the adjunction of h!. But h!i∗H = 0, which contradicts that G 6= 0.

Lemma 2.34. Let h : Y ↪→ X be a locally closed embedding.
The functor h!∗ : Perv(Y )→ Perv(X) is fully faithful. For F ∈ Perv(Y ) the object h!∗F is the

unique perverse sheaf (up to isomorphism) with the following properties:

1. It is supported on Y .

2. Its restriction to Y is isomorphic to F .

3. It has no nonzero subobjects or quotients supported on Y \Y

Proof. Without loss of generality, let X = Y . Let i : Z ↪→ X be the complementary closed
embedding of h. Let Perv◦(X) be the set of perverse sheaves on X which have no nonzero
subobjects or quotients supported on Z.

We will show that h∗ : Perv◦(X) → Perv(Y ) is fully faithful, then by the previous lemma,
h∗h!∗F ∼= F so that h!∗ is a right inverse of h∗ and hence also fully faithful. So all we need to
show is that HomPerv◦(X)(F ,G) ∼= HomPerv(Y )(h

∗F , h∗G).
Step 1: Obtain a long exact sequence with Hom(F ,G) and Hom(h∗F , h∗G).
Let F ∈ Perv◦(X) and consider the distinguished triangle

h!h
∗F → F → i∗i

∗F →

Let G ∈ Perv◦(X) and apply Hom(−,G) to get the long exact sequence

· · · → Hom(h!h
∗F [1],G)→ Hom(i∗i

∗F ,G)→ Hom(F ,G)→ Hom(h!h
∗F ,G)→

→ Hom(i∗i
∗F [−1],G)→ · · ·

By adjunction and using h∗ = h! and i∗ = i!, this complex coincides with

· · · → Hom(h∗F , h∗G[−1])→ Hom(i∗F , i!G)→ Hom(F ,G)→ Hom(h∗F , h∗G)→
→ Hom(i∗F , i!G[1])→ · · · (1)

We want to show all the terms except Hom(F ,G) and Hom(h∗F , h∗G) are zero.
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Step 2: For F ∈ Perv◦(X), show i∗F ∈ pDb
c(Z)≤−1 and i!F ∈ pDb

c(X)≥1.
Since F ∈ Perv(X), then using Lemma 2.12, we see that i∗i

∗F ∈ pDb
c(X)≤0 and h!h

∗F ∈
pDb

c(X)≤0. By applying pH0, we get the long exact sequence,

· · · → pH0(F)→ pH0(i∗i
∗F)→ pH0(h!h

∗F [1])→ · · ·

But h!h
∗F [1] ∈ pDb

c(X)≤−1 so that τ≥0h!h
∗F [1] = 0. Then pH0(h!h

∗F [1]) = 0 and so pH0(F)→
pH0(i∗i

∗F) is surjective. But pH0(i∗i
∗F) is supported on Z so since pH0(F) = F has no

nonzero quotients supported on Z, then pH0(i∗i
∗F) = 0, which means i∗i

∗F ∈ pDb
c(X)≤−1.

By Proposition 2.14, i∗ is an equivalence of categories so i∗ is t-exact and fully faithful so in fact
i∗F ∈ pDb

c(Z)≤−1.
Similarly, by using the distinguished triangle i∗i

!F → F → h∗h
∗F →, we show that i!F ∈

pDb
c(Z)≥1 for F ∈ Perv◦(X).
Step 3: Show Hom(h∗F , h∗G[−1]) = 0
By Lemma 2.12, h∗ is t-exact so h∗F ∈ pDb

c(X)≤0, and h∗G[−1] ∈ pDb
c(X)≥1. Then it follows

that Hom(h∗F , h∗G[−1]) = 0.
Step 4: Show Hom(h∗F , i!G) = 0
By Lemma 2.12, i∗F ∈ pDb

c(Z)≤0 and Step 2, i!G ∈ pDb
c(Z)≥1 so that Hom(i∗F , i!G) = 0.

Step 5: Show Hom(i∗F , i!G[1])0
By Step 2, i∗F ∈ pDb

c(Z)≤−1 and i!G[1] ∈ pDb
c(Z)≥0 so that Hom(i∗F , i!G[1]) = 0.

Hence, (1) gives that Hom(F ,G) ∼= Hom(h∗F , h∗G) so that h∗ is indeed fully faithful.

Corollary 2.35. Let h : Y ↪→ X be a locally closed embedding. The functor h!∗ takes injective
maps to injective maps and surjective maps to surjective maps.

Proof. Exercise.

Proposition 2.36. Let X be a smooth, connected variety of dimension n. The category of
Loc(X)[n] is a Serre subcategory Perv(X).

Proof. For proof, see Proposition 4.2.12 on page 280 of [1].

Lemma 2.37. Let F ∈ Perv(X) and let i : Z ↪→ X be the inclusion of a closed subvariety.

1. pH0(i∗i
!F) is the largest subobject of F supported on Z.

2. pH0(i∗i
∗F) is the largest quotient of F supported on Z.

Proof. For part (1), let j : U → X be the complementary open inclusion. Consider the the
distinguished triangle i∗i

!F → F → j∗j
∗F →. By Lemma 2.12, j∗ and i∗ are t-exact and i! and j∗

are left t-exact for the perverse t-structure, so all these terms are in pDb
c(X)≥0. By applying the

perverse zeroth cohomology functore, we get a long exact sequence which starts with pH0(i∗i
!F),

so that pH0(i∗i
!F) is a subobject.

Suppose G ∈ Perv(X) such that suppG ⊂ Z. Then by Proposition 2.14, there is some H ∈
Perv(Z) such that i∗H = G. By applying Hom(G,−) to the distinguished triangle above,

· · · → Hom(i∗H, j∗j∗F [−1])→ Hom(G, i∗i!F)→ Hom(G,F)→ Hom(i∗H, j∗j∗F)→ · · ·

By adjunction for j∗, the first and last terms become Hom(j∗i∗H, j∗F [−1]) and Hom(j∗i∗H, j∗F)
respectively. But j∗i∗ = 0 so that these terms are zero. Then each map G → F factors uniquely
through G → i∗i

!F . Since G,F ∈ Perv(X) and i∗i
!F ∈ pDb

c(X)≥0, then when we apply pτ≤0 to
these maps, we have a unique map G → pτ≤0i∗i

!F = pH0(i∗i
!F) which makes the diagram in the

lemma commute.
For part (2), the proof is analogous.

16



Example 2.38. Let X be smooth and let L be a local system on X. Then for h : U ↪→ X a dense
open subspace, by Lemma 2.34, h!∗(L[dimX])|U ∼= L[dimX]|U and it has no nonzero subobjects
or quotients supported on X \U . By the universal property in Lemma 2.37, the largest subobject
supported on X \ U is pH0(i∗i

!L[dimX]) = 0 where i : X \ U ↪→ X. Similarly, there are no
nonzero quotients on L[dimX] supported on X \ U so that IC(U,L|U ) = L[dimX].

Lemma 2.39. Let X be an irreducible variety. Let j : U ↪→ X be the inclusion map of an open
subset. Let i : Z ↪→ be the complementary closed subset. Let F ∈ Perv(X).

1. If F has no nonzero quotients supported on Z, then there is a natural short exact sequence

0→ pH0(i∗i
!F)→ F → j!∗(F|U )→ 0

2. If F has non nonzero subobject supported on Z, then there is a natural short exact sequence

0→ j!∗(F|U )→ F → pH0(i∗i
∗F)→ 0

Proof. For part (1), suppose F has no nonzero quotients supported on Z. Consider the injective
map pH0(i∗i

!F) → F given in Lemma 2.37 and let K be the cokernel of this map. We want to
show that j!∗(F|U ) ∼= K.

Since K is a quotient of F , it is not supported on Z and has no quotients supported on Z. By
the universal property of the injective map, K has no nonzero subobjects supported on Z. Finally,
since K|U ∼= F|U then by Lemma 2.34, this object must be j!∗F|U .

Lemma 2.40. Let Y ⊂ X be a smooth, connect, locally closed subvariety. Let 0 → L′ → L →
L′′ → 0 by a short exact sequence of local systems on Y . Then IC(Y,L) admits a three step
filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ F3 = IC(Y,L)

such that F1
∼= IC(Y,L′), F3/F2

∼= IC(Y,L′′) such that F2/F1 is supported on Y \Y .

Proof. Let h : Y ↪→ X be the inclusion. By Corollary 2.35, h!∗ takes injective maps to injective
maps and surjective maps to surjective maps so that we have the maps

IC(Y,L′) IC(Y,L) IC(Y,L′′)f g

Since these maps come from a short exact sequence and h!∗ is a functor, then g ◦ f = 0 and
hence im(f) ⊂ ker g. Set F1 = im(F ) so that F1

∼= IC(Y,L′) and set F2 = ker(g) so that
IC(Y,L)/F2

∼= IC(Y,L′′). All that is left is to show that F2/F1 is supported on Y \Y . Clearly,
the support is contained in Y . We want to show that (F2/F1)|Y = h∗(F2/F1) = 0. But when we
apply h∗ to the sequence above, since h∗h!∗F ∼= F , then

L′[dimY ] ↪→ L[dimY ]� L′′[dimY ]

which is the original short exact sequence so that ker(g)|Y = im(f)|Y . Then it follows that
(F2/F1)|Y = ker(g)|Y /im(f)|Y = 0.

Proposition 2.41. Every perverse sheaf admits a finite filtration whose subquotients are inter-
section cohomology complexes.

Proof. We proceed by Noetherian induction.
Let F ∈ Perv(X). Let S be a stratification that F is constructible with respect to. Let U be

an open stratum of S and j : U ↪→ X be the inclusion. Let i : Z ↪→ X be the complementary
closed inclusion.
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Then j∗F = F|U ∈ Perv(U) so by Example 2.7, since j∗F is constructible with respect to
the trivial stratification, then j∗F ∼= L[dimU ] for some local system on U . Apply Lemma 2.37 to
consider the short exact sequence

0→ pH0(i∗i
!F)→ F → K

where K is the cokernel of the injective map pH0(i∗i
!F) → F . Since pH0(i∗i

!F) is supported on
Z, then we can apply the induction assumption to see that pH0(i∗i

!F) has a finite filtration whose
subquotients are intersection cohomology complex. We will now show that the cokernel K also
has such a filtration and thus F does as well.

Since pH0(i∗i
!F) is supported on Z, when we apply j∗ to the distinguished triangle above, we

get
0→ j∗F → j∗K → 0

Hence j∗K ∼= j∗F ∼= L[dimU ]. By the universal property from Lemma 2.37, K has no subobjects
supported on Z and so we may apply Lemma 2.39 to K.

0→ j!∗(K|U )→ K → pH0(i∗i
∗K)→ 0

Again, by induction pH0(i∗i
∗K) has a finite filtration whose subquotients are intersection coho-

mology complexes and the first term is a intersection cohomology complex and thus K has such a
filtration as well.

Remark 2.42. Proposition 2.41 implies that every simple object in Perv(X) is an IC sheaf of a
local system.

Proof of part 1) of Theorem 2.29. We want to show that IC(Y,L) is a simple object in Perv(X),
i.e. we need to show there are no non-trivial subobjects.

Suppose that F ⊂ IC(Y,L) is a nonzero subobject. Then by Proposition 2.14, we can assume
that X = Y so that h : Y → X is an open embedding. Since F is not supported on X \ Y , then
h∗F 6= 0. h∗ is t-exact so h∗F is a subobject in L[dimX].

By Proposition 2.36, Loc(X)[dimX] is a Serre subcategory and thus closed under taking sub-
objects. So h∗F is a sub-local system of L[dimX] and hence it coincides with L[dimX]. Then the
cokernel of F inside IC(Y,L) is supported on X \ Y , but IC(Y,L) has no subquotients supported
on X \ Y by Lemma 2.34 so that the cokernel must be zero. Hence F ∼= IC(Y,L).

Proof part 2) of Theorem 2.29. We proceed by Noetherian induction. We assume that the state-
ment is true for all proper closed subvarieties of X.

By Proposition 2.41, we only need to prove that IC(Y,L) has a finite filtration whose subquo-
tients are simple intersection cohomology complexes.

Pick y0 ∈ Y . Then by the correspondence between local systems and representations of
π1(Y, y0), L correspondes to a finite dimensional representation M . Since M is a representation,
it has a finite filtration whose subquotients are irreducible representations and thus by this cor-
respondence, L has a finite filtration by sub local systems such that the quotients are irreducible
local systems. Now we apply Lemma 2.40 multiple times to get quotients that are either IC sheaves
of irreducible local systems or quotients supported on Y \Y . The former are simple IC sheaves
while the later have the desired filtration by induction.

Proof of part 3) of Theorem 2.29. This follows from Remark 2.42.

Lemma 2.43 (Duality). Let Y ⊂ X be a smooth, connected, locally closed subvariety and let L
be a local system on Y . Then there is a natural isomorphism

D(IC(Y,L)) ∼= IC(Y,L∨)

Finally consider the following lemma:
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Lemma 2.44 (Lemma 4.2.8 of [1]). Let F ∈ Perv(X). Let (Xs)s∈S be a stratifications such that
both F and DF are constructible with respect to S . Let u ∈ S and let L be a local system of
finite type on Xu. The following conditions are equivalent:

1. F ∼= IC(Xu,L)

2. We have suppF ⊂ Xu and F|Xu
∼= L[dimXu] and for each stratum Xt < Xu if jt : Xt ↪→ X

we have

j∗tF ∈ Db
locf(Xt)

≤− dimXt−1 j!tF ∈ Db
locf(Xt)

≥− dimXt+1

Proof. For proof, see Lemma 4.2.8 of [1].

Remark 2.45. This lemma shows us that for IC sheaves, the requirements for cohomology van-
ishing is one degree stricter than for general of perverse sheaves.

Theorem 2.46. ICX ∼= IC(Y,C), where Y is any smooth subset of X and ICX is as defined in
section 2.1.2.

Sketch of proof. We prove that ICX satisfies part 2. of Lemma 2.44 when L = CXu
. For conve-

nience, let n = dimCX.
Step 1: Prove that ICX |Xu

∼= C[n].
Consider ICX |Xu

. Then there are no added conditions on |ξ| ∩ Xu by definition, so every
i-intersection chain is just an (n− i)-chain. Let C• be the sheaf of locally finite i-chains on Xu so
that ICX |Xu

= C•.
Let Si(Xu) be the group of singular i-cochains with coefficients in C and let S• be the chain

complex. Since Xu is locally contractible, then using the proof of Theorem 3.15 from Roger’s talk
[3], S•,+ ∼= CXu

are quasi-isomorphic. For U ⊂ Xu open, we have a map S2n−i(U) → Ci(U) by
α 7→ [U ]∩α, where [U ] is the fundemental class of U . This induces a map S2n−1,+(U)→ Ci(U) =
ICn−i(U). By Poincaré duality, this is a quasi-isomorphism and hence S•,+[n] ∼= ICX |Xu

so that
it follows that CXu

[n] ∼= ICX |Xu
.

Remark 2.47. It is a more general fact that ωX ∼= C•.

Step 2: Prove that Hi(j∗t ICX) = 0 for all i > −dimXt − 1.
For this proof, we follow [6]. Consider Xt and let ix : {x} → X be the inclusion of some

x ∈ Xt.
fact: For X a complex variety and Xs ⊂ X smooth, there exists an N ⊂ X open such that

x ∈ N and there exists some Lx such that R2 dimXs × cone(Lx) ∼= N .
Claim: The stalk at x ∈ Xt of H•(ICX) is given by

i∗xH
i(ICX) =

{
IH−i−dimXt−1(Lx) i ≤ −dimXt − 1

0 i ≥ −dimXt

Idea of proof : If i > −dimXt− 1, then −i < dimXt + 1, then any intersection i-chain ξ will have

dimR(|ξ| ∩Xt) ≤ −i+ dimXt − 1 < dimRXt

So ξ intersections Xt in a subset of dimension less that dimRXt. By transversailty, it can be
moved away from {x}. Thus ξ = 0 in the local homology group.

If i ≤ −dimXt − 1, the idea is that dimR(|ξ| ∩Xt) ≥ dimRXt so that any cycle that contains
{x} also contains a neighborhood of {x}. This means that locally this intersection homology looks
like RdimXt × cone(Lx).

So we know for every x ∈ Xt, i
∗
xH

i(ICX) = 0 for i ≥ −dimXt or, equivalently, for i <
−dimXt − 1. As Hi(i∗x ICX) = i∗xH

i(ICX), then we have for every x ∈ Xt, H
i(i∗x ICX) = 0

when i < dimXt − 1. But since this is true for every x ∈ Xt, then Hi(j∗t ICX) = 0 for all
i < −dimXt − 1.

Step 3: Prove that Hi(j!t ICX) = 0 for all i < − dimXt + 1.
We will omit this step.
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Remark 2.48. Recall that Hi(X, IC•X)) = IHi(X,C), where IC•X
∼= IC(Y,C) for some smooth

Y . Define IHc(X) := HiRΓc(IC
•
X). Then D(IC(Y,C)) ∼= IC(Y,C)) so that D(ICX) ∼= ICX . Also,

we know f! ◦ D = D ◦ f∗ so since RΓ = aX∗ and RΓc = aX! then

IHi
c(X) ∼= Hi

c(ICX)

= HiRΓcD(ICX)

= HiDRΓ(ICX)

= H−iRΓ(ICX)∗

= IH−i(X)∗

so that intersection homology obeys Poincaré duality.
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