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In these notes, we will introduce the notion of ¢-structures on a triangulated cateogry. The
initial motivation behind this definition has to do with the derived category D®(.27) of an abelian
category «7/. What structure do we need to impose on D?(.«7) to recover .« inside D®(A)? This is
done via introducing the notation of a t-structure, which is an additional structure on a triangulated
category. The category DY(A) has a tautological t-structure that gives rise to A.

Let X be an algebraic variety. We introduce the perverse t-structure on D°(X), which are used
to define the abelian subcategory of perverse sheaves in the derived category. Perverse sheaves
are very closely related to intersection cohomology - which is a cohomology theory defined for
singular spaces that has a Poincaré duality. We will give a both a topological definition and a
sheaf theoretic definition of intersection homology. Intersection cohomology and perverse sheaves
have applications in representation theory. For example, these play a cruicial rolein the proof of
Kazhdan-Lustig conjecture on the characters of simple modules in the BGG category O and in
the Geometric Satake correspondence.

1 ¢-structures and Truncation

Definition 1.1. Let .7 be a triangulated category (e.g. D’(A) for an abelian category A). and
let (7=0,.729) be a pair of strictly full subcategories (subcategories that are full and closed under
isomorphism). For n € Z, let

F=n = 70n), Tz" = 720n)
Then (7<%, 729) is called a t-structure on 7 if the following holds:
1. 7571 c 7<% and 7271 5 720
2. f X € 75 Land Y € 720, then Hom(X,Y) = 0.

3. For any X € .7, there is a distinguished triangle A — X — B — with A € .Z<7! and
Be 720,

If this pair is a t-structure, then .7<° N .72Y is called the heart.
Definition 1.2. We say that a t—structure is
e bounded below if VX € 7, In € Z such that X € T2

bounded above if VX € &, 3n € Z such that X € ="

bounded if it is bounded above and below

o non-degenerate if (),cq T=" = Nyep, 72" =0

Notice that it follows immediately that .Z7<" ¢ .Z7<"*+! and 72" > .Z72"*+! from the second
condition.



Example 1.3. Let o/ be an abelian category. Consider the subcategories
D)= = {X € D"(/) : H(X) =0fori >0} D°(&)2°={X € D"(&): H(X)=0fori<0}
Then this pair forms a t-structure on D®(<7).

Example 1.4 (Torsion-pair t-structure, see [2]). Let & be an abelian category. A torsion pair
(T,Z) is a pair of strictly full subcategories such that

1. Hom(T,F)=0forall T e T,F € Z

2. For any object A € o7, there exists a short exact sequence
0=-T—>A—=F—=0

where T'€ T, F € .

If these conditions hold, we call T a torsion class and F a torsion free class.
Now, we can get a t-structure on D?(&/) by setting

Db(e)S0 = {F e D*(o) : H(F) =0 fori >0, H*(F) € T}
DY)z = {F e D"(&): H(F)=0fori< —1,H ' (F) € F}

Exercise: Prove this is a t-structure.

Example 1.5 (Special case of Example 1.4). Consider the category whose objects are triples
(V,W,T) where V, W are vector spaces and T': V' — W is a linear transformation and the objects
are defined in a natural way (i.e. the category of representations of the type As Dynkin quiver).
As we saw in Baldzs’ talk [4], this is equivalent to the category of sheaves on P! constructible with
respect to the stratification {0}, P1\{0}.

Let 7 = {V — 0} and let 7 = {V — W injective }. Then (7, F) is a torsion pair and this
(*D*(A)=0,"Db(A)Z°) is the induced t-structure on the derived category.

For the rest of this section, we will always consider a triangulated category 7 with t-structure
denoted by (F=9, 720).

Lemma 1.6.
1. X € 75" <= Hom(X,Y) =0 forall Y € 72"+
2. X € 72" < Hom(Y,X)=0 forallY € 7"~}

Proof. The direction ( = ) is obvious by the definition of ¢-structure. For ( <= ), pick a
distinguished triangle A — X — B — where A € 75" B € 72"l Since X € 7=", then
Hom(X, B) = 0so that X — B is zero. Thus, this distinguished triangle splits and A = X @ B[-1].
Then the projection map p : A — B[-1] € Hom(A, B[-1]). But A € =" Cc <"l and
B[-1] € 72"*2 50 by the second condition Hom(A4, B[-1]) = 0. Then p = 0 hence B[—1] = 0.
Thus A 2 X so that X € 7=".

Part (2) is left as an exercise. O

Definition 1.7. A subcategory € of .7 is called stable under extensions if for every A, B € €
such that there is a distinguished triangle A — T — B —, then T' € €.

Lemma 1.8. For any n € Z, the categories T =" and T=" are stable under extensions.
Proof. Exercise. (Hint: Construct a long exact sequence using Y € .72n+1). O
Proposition 1.9 (Truncation).

1. The inclusion T<" < T admits a right adjoint <"+ T — T=",



2. The inclusion T2" — T admits a left adjoint 72" : T — T2,

3. There is a unique natural transformation § : 72" — 7<"[1] s.t. for any X € 7, the
diagram
TSX — X = r2"TIX 5 S X (1)

is a distinguished triangle. Any distinguished triangle A — X — B — with A € =",
B € 72"t is canonically isomorphic to this one.

In particular, <729 takes values is T<b N T2,

Example 1.10. Consider the natural ¢-structure of D’(«/). Pick X € D¥(&/) represented by a
complex
s X TP X XY Xt X2

Then 75"(X) is given by the chain complex

n—2 n—1 mn
e X2 L xn D ker(d®) L5050 L

This chain complex has the same cohomology of X when i < n and zero for i > n.
Similarly, 72" (X) is the chain complex

dnfl _ dn dn+l
o= 0= 05— coker(d" ) S XL L X2

Proof of Proposition 1.9. This proof is done in 4 steps:
Step 1: Define 7=~! and 72° and § on objects.
For each X € 7, fix a distinguished triangle

Axi>Xi>Bx—>

where Ax € 7571 By € 729 Set 7=7}(X) = Ax,72%X) = Bx and § : 72%(X) — (r=71X)[1]
is the third morphism in this triangle.

Step 2: Define 771,729 § as functors by specifying what they do on morphisms.

We still need to describe that these functors do on morphisms, f : X — Y. Consider the

distinguished triangle Ay 2+ Y %5 By — where Ay and By are the images of 7=~1 and 72°
respectively. Then we have the diagram

AX BX

9 x _h
ip lf iq
v ’ Y h/ v

Ay g BY

By the Lemma of unicity of triangles from Hyungseop’s talk [7], we know that there exist a unique
p and ¢ that make the diagram commute. So we have defined how 7=~1 and 72° act on morphisms
and in fact, we have shown that § is a natural transformation

Step 3: Show that 7=~ is the right adjoint of the inclusion map .71 < .7 and 729 is the
left adjoint of the inclusion map 729 < 7.

Consider Z € Z=71. Then we get the long exact sequence
.-« — Hom(Z, (12°X)[~1])) = Hom(Z,7="}(X)) — Hom(Z, X) — Hom(Z,72°X) — ...

The first and last terms are zero, so that Hom(Z, 757(X)) = Hom(Z, X) and hence 7571 is the
right adjoint to the inclusion.

Exercise: Prove that 720 is the left adjoint of .72° < 7.

Step 4: For general n € Z:

Set 7="(X) = (="} X[n + 1]))[-n — 1] and 72"(X) = (72°(X[n]))[-n]. The proof that
these functors are the right and left adjoints of the natural inclusion maps is similar to the above
case. O



Lemma 1.11. For any a,b € Z such that a < b, there are natural isomorphisms

1. 7S0rsb _y p<a

2. 72b 5 p2br2a

3. 720rSb _y pSbrza
Theorem 1.12 (Theorem 1.8.10 of [1]). The heart € := T<°N.T2° of a t-structure is an abelian
category.

To prove this, we need to show that every morphism has kernel and cokernel, and that every
monomorphism is the kernel of its cokernel and the dual claim holds for epimorphisms. We first
prove the following lemma, which shows that every morphism in % has a kernel and cokernel.

Lemma 1.13. Let f: X — Y be a morphism in the heart of the t-structure on 7. Consider the
distinguished triangle

xLy4z5hxn
(i) Then Z € 7<°N 7271 and 7=°(Z[-1]), 72°Z € ©.

(ii) The composition T<°(Z[-1]) — Z[-1] ML X s the kernel of fin €.

(iii) The composition Y & Z — 7297 is the cokernel of f in €.

Proof. For (1), we know that Y € 750N 720 c 70N 7271 and X[-1] € 7="'nT=2"1 C
F<9N 7271, Since these categories are stable under extensions, then Z € 7<0n. 7271,

Then Z € 750 and so 7=°Z = Z. If we apply 72°, we get that 7207 = 7207507 = 750,207
which takes values in €. Similarly, Z[—1] € 751N 720 50 7=07[-1] = 7507207[-1] € .

For (2), consider X’ € €. Then we obtain the long exact sequence

-+« = Hom(X',Y[~1]) = Hom(X’, Z[-1]) — Hom(X’, X) — Hom(X",Y) — ...

Since Y € 759N 720 then Y[-1] € 751 N 721 so that Y[-1] € 2. Since X' € 7= then
Hom(X,Y[-1]) = 0.

Suppose ¢ : X’ — X is a morphism of C such that fog = 0. Then since Hom(X,Y[-1]) =0, g
factors through a unique morphism ¢’ : X’ — Z[—1]. Since X’ € 7= then as 7=0 is the adjoint
of the inclusion, then there is a unique map ¢” : X — 7=0(Z[—1]) such that ¢’ factors through
q".

Then we conclude 7<9(Z[~1]) — Z[~1] — X is the kernel of f.

Similarly, we can find the cokernel as Y — Z — 7207, O

Proof of Theorem 1.12. All that is left is to show that is that every monomorphism is the kernel
of its cokernel and that every epimorphism is the cokernel of its kernel.

Suppose that f: X — Y is a monomorphism in . Complete this morphism to a distinguished
triangle

xLyz

By the previous lemma, 7<(Z[~1]) — Z[—1] — X is the kernel of f and since f is a monomor-
phism, this is zero. Thus, 75%(Z[—1]) = 0 and hence Z =2 72°Z. Then Z € ¥ and g is a morphism
in €, where g is the cokernel of f.

We have the distinguished triangle

Y %z - xp 0

so that the kernel of g is the composition 7<9(X) — X Ly, But 759(X) = X so that the kernel

of gis f.
Similarly, we can prove that every epimorphism is the cokernel of its kernel. O



Remark 1.14. One of the motivations of defining a t-structure was to recover the abelian category
&/ from its derived category D(«7). In this case, the heart € of the natural ¢t-structure on D(</)
is equivalent to 7.

Definition 1.15. Let € = <9 N 729 be the heart of a t-structure on .7. The zeroth t-
cohomology functor is defined to be

THO = 750720, 7 4 @
The n"* ¢-cohomology functor is "H"(X) = "H(X [n]).

Example 1.16. Consider the tautological t-structure on D%(27). For a complex X € D°(&),
then "HO(X) = 7=9(72°X) is just the complex

= 0= HY(X) = 0— ...
Proposition 1.17. The functor "H° : 7 — € is a cohomological functor.
f

Corollary 1.18. Let X 5 Y % Z be two morphisms in €. The following conditions are
equivalent:

1. The sequence 0 — X Ly %z 0 4s a short exact sequence

2. There exists a morphism h : Z — X[1] in T such that X Ly % zhisa distinguished
triangle.

If these conditions hold, then h is unique.

This follows since we can obtain 1) from 2) by applying “H° which sends distinguished triangles
to exact sequences.

Definition 1.19. A triangulated function F : 9 — % is left t-exact if F(F2°) ¢ Z,°° and
right t-ezact of F(7.=") ¢ Z,=°. The functor F is called t-ezact if it is both left and right t-exact.

Lemma 1.20. Let 91 and Z5 be triangulated categories equipped with t-structures and let € and
> denote their hearts. Let F : 91 — 95 be a triangluated functor.

1. If F is left t-exact, then the functor "TH® o F' : €, — % is left exact.
2. If F is right t-exact, then the functor "H® o F : €, — €5 is right ezact.

Example 1.21 (Triangulated category which is not the derived category of the heart). Consider
the category Df’ocf(IP’l). The heart C of the tautological t-structure is

C = Loc(P")
But Loc(P!) = Rep(m1 (P!)) = Rep(Z) = Rep({1}) = Vecte. Then D?(C) = Db(Vect).
But in Db (]P)l), EthD‘C’(]P’l)((CPlv(CPI) = RHOII’I((C]pl,(C]pl) = RF((C]pl) = HQ(IP)l) = C while

locf

Ext%,eict(V, V) = 0 for every vector space. Thus D} (P!) % D*(C).

locf

2 Perverse Sheaves

Definition 2.1. Let X be a variety. The perverse t-structure on X is the t-structure on D%(X)
given by

PDY(X)= = {F € DX(X) : Vi,dimsupp H'(F) < —i}

PDY(X)=0 = {F € DY(X) : Vi,dimsupp H (DF) < —i}

The heart of this t-structure is Perv(X) =?D5%(X)<0NPDY(X)2Y i.e. . Objects in the heart are
called perverse sheaves.



Remark 2.2. In particular, this means that when F € Perv(X), then H*(F) = 0 for i > 0 while
HY{(DF)=0fori<0

We will prove this is indeed a t-structure in Theorem 2.10.

Remark 2.3. Given this definition of the perverse t-structure, then
FerDb(X)2Y «— DF ePDb(X)=°

Definition 2.4. Let X be a variety. A good stratification is a stratification (X;)se.»» such that
for any local system of finite type £ on X, if js : Xg — X is the inclusion, then the object
js L € DY(X) is constructible with respect to ..

Remark 2.5. Any stratification of X can be refined by a good stratification.

Example 2.6 (Normal crossing stratification). Let Z C X be a divisor with simple normal
crossings and components Z1, ..., Z;. As in Baldzs’s talk, the normal crossing stratification under
the index set ./ = {I C [k]} is given by X; ={x € X : x € Z; <= i € I'}. This stratification is
a good stratification by Lemma 3.5.8 of [1].

For a good stratification . on X, we have an induced t-structure on D%, (X):
"Dy (X)=0 =P DY(X)=" N D (X)
D% (X)= ="DY(X)=° N DY (X)

Example 2.7. For X a smooth connected variety and S a trivial stratification. Then Pervg(X) =
Loc/*(X)[dim X].

The perverse t-structure of D% (X) is closely related to the standard t-structure on Df _(Xs)
of the strata of X in the following way:

Lemma 2.8. Let X be a variety and let (Xs)se.r be a good stratification. For each s € .7, let
js : Xs = X be the inclusion map.

1. Suppose F € Db(X) is constructible with respect to .#. Then

FePDYUX)S0 <= jiF € D}, (X)X vse.s

2. Let F € DQ(X) and suppose DF is constructible with respect to .. Then

FePDUX)?" <= jiF € D}, [(X,)7~ 4% Vs e

Proof. We will prove (1).
( <) Suppose that j*F € Db (X,)S—dmX: e, Hi(j*F) =0 fori > —dim X, for every
s € .. Soif H(j:F) # 0, then i < —dim X,. Then

dim supp H*(F) = max{dim X, : j2H'(F) # 0}

but since j* is exact, then j* H'(F) = H'(j*F) and dimsupp H*(F) < —i. Hence F € PD%(X)=0.

For ( = ), suppose that F € P D%(X)=Y. Then dimsupp H*(F) < —i for every i. By definition
dimsupp H'(jF) < dimsupp H*(F) < —i

Since j*F € D% (X,), then H(j*F) is a local system so if it has nonzero support, then

locf
dimsupp H'(j:F) = dim X

Combining these facts, we get that dimsupp H*(jF) = dim X, < —i. Thus if —i < dim X, this
contradicts that F € PD5(X)=0 so that H'(j*F) = 0. Thus F € D} (X,)S—dimXs,

locf
Exercise: prove (2). O



Similarly, we can relate the perverse t-structure of D(X) to the standard t-structure.

Lemma 2.9. Let X be a variety. We have
DX)E 4 P00 € D)=
DY(X)20 € PDY(X)Z0 € DY(x)Z Im X

Proof. If F € Db(X)=~4mX | we need to show dimsupp H(F) < —i. We know H*(F) = 0 for
i > —dim X, or equivalently for —i < dim X. Then dimsupp H*(F) =0 < —i for i > —dim X. If
i < —dim X, then —i > dim X and so dimsupp H*(F) < dim X < —i holds automatically. Thus
F e PDb(X)=0.

For G € PD%(X)2%, then for all F € PD%X)=~!, Hom(F,G) = 0. In particular, by the
first inclusion, Hom(F,G) = 0 for all F € Db(X)S~4mX=1 and hence by Lemma 1.6, G €
DIC)(X)ZfdimX.

Exercise: Prove ?D%(X)<° ¢ DY(X)=? and D%(X)=° c P D%(X)=0. O

Theorem 2.10. Let X be a variety.
1. The pair (PDY(X)=0 P Db(X)2%) is a t-structure on D2(X).

2. Let (Xs)ser be a good stratification on X. Then the pair ("D%(X)<9,?D%(X)=°) is a
t-structure on D%, (X).

To prove this, we need to show the three conditions for being a t-structure hold:
(1) PDY(X)<1 € PDY(X)=0 and PDE(X)>"1 5 PDY(X)>"
(2) If F €?DY%X)=<"1 and G € PD%(X)=°, then Hom(F,G) = 0.

(3) For any F € D%(X), there is a distinguished triangle A — F — B — with A € P D%(X)="1
and B € PD%(X)=0°.

The first condition (1) is obvious from the definition. We will use the following lemma to prove
(2):
Lemma 2.11. Let F € D%(X)<C. For all G € ?D%(X)=!, we have Hom(F,G) = 0.

Proof. We can use an induction argument using the truncation functor to reduce to the case when
F = HI(F[—k])

Since G € PD%(X)=1, then we can choose a good stratification of X such that DG and F are
constructible. Call this stratification .%.

Now, we proceed by induction on the size of .. Let i : X; < X be the inclusion of the closed
stratum and j : X\X; < X be the inclusion of the complementary open. Using Theorem 3.34
from Roger’s talk, we have the distinguished triangle

RHom(i*F,i'G) — RHom(F,G) — RHom(j*F,j*G) —
Then we have the long exact sequence
.-+ = Hom(i* F,i'G) — Hom(F,G) — Hom(j*F,5*G) — ...

By induction, Hom(j*F, j*G) = 0. We will show that the first term is also zero.

If i*F = 0, then Hom(i*F,4'G) = 0. Suppose that i*F # 0, then X; C supp H*(F) and hence
dim X; < dimsupp H*(F) < —k. Then dim X; < —k.

Since DG is constructible and G € PDY(X)=! then by Lemma 2.8, i'G € D (X,)=~ dimXe+1,
But i* F is concentrated in degree k since F is but i'G is above degree — dim X; +1 > k and hence
Hom(i*F,i'G) = 0 so that Hom(F,G) is also zero. O



To prove the last condition (3), we will need to construct a distinguished triangle
F'-F—>F'—

where 7/ € PDY(X)<71 F” € PD%(X)2°. To construct these complexes, we need to understand
how open and closed embeddings behave with respect to the perverse t-structure.

Lemma 2.12. Let j: U < X be an open embedding and let i : Z — X be a closed embedding.
1. j*(PDYUX)=") C PDYU)=° and j*("DY(X)=%) C PDY(U)=".
2. j("DU)=0) € PDY(X)=0
3. 3.(PDUU)=") C PDY(X)="
4. i (PDZ)=%) C PDUX)=C and i.("DY(Z)Z°) € PDY(X)=°
5. i*("DY(X)=) C "D(Z)=°
6. i'(PDY(X)Z%) c PDb(2)=°.
Proof. For part (1), let F € PDb(X)<0, G € PD%(X)=20. Since j* is t-exact, and doesn’t increase

the dimension of the support then

dimsupp H(j*F) = dimsupp j* H(F) < dimsupp H'(F) < —i

so that j*F € PDb(X)=V.
Since j* also commutes with D,

dim supp H*(D(j*G)) = dimsupp H'(j*(DG)) < dimsupp H*((DG)) < —i

so that j*G € PD%(X)=0. Similarly, part (4) holds because Di* = i*D.
For (2), let F € PD5%(X)<Y. Since j is t-exact and does not change the dimension of the
support, then
dim supp H*(jiF) = dimsupp H*(F) < —i

so that 5 F € PD%(X)=C. Similarly, part (5) holds.
For (3), suppose F € PD%(X)=". Then by Theorem 2.2 part (3) of [7], Do j, = ji oD so that
Dj.F = 7#DF. So by using part (2),

dim supp H*(Dj,F) = dimsupp H'(jiDF) = dimsupp H'(DF) < —i
Hence j..F € PD%(X)<C. Similarly, part (6) holds. O
We are now ready to prove the theorem.

Proof of Theorem 2.10. To prove the theorem, all that is left to show is condition (3).

We will first construct an object G which we use to construct F’. Then, using an octahedral
diagram, we will construct F”. Finally, we prove that these objects F', F” form the distinguished
triangle we want.

We proceed by noetherian induction. Let . be a good stratification such that F and DF are
constructible. Let j : X; < X be an open stratum and ¢ : X\ X; < X be the closed complement.
Denote dim X; by d;.

Step 1: Construct G.

D} (X;) has a natural t-structure. By definition, j;F € D! .(X;). Then using the t-structure,
we have the distinguished triangle

TSThTLG T F s 2

Since jy is t-exact for this t-structure, then we obtain the exact sequence



G T = gl F o jurs T MG F =

By composing with the natural map j;j; F — F defined in Roger’s talk [3], we can complete

the distinguished triangle to obtain G € D%(X).
GJuTS T F S F 5 G —
If we apply j; to this exact sequence, then we get
TS—dith—ljzc]: N jzc}v - j:g R

and by the uniqueness of the distinguished triangle, then j; 2= dim Xy g
Step 2: Construct F”.

Since G € DY(X), then i'G € D%(Z). By induction, (PD2(Z)<°P Db(Z)=2°) is a t-structure. In
particular, we have the distinguished triangle

>0,

Pr<-1'g il —» P0G —

By applying the t-exact functor i,, we have
i P757N'G = 0,id'G — i, Pr2%' G —

Then composing with the natural map i,i'G — G, we find F” € D%(X) such that the following is
a distinguished triangle
i PTG = G — F

Apply i* to conclude that ' F” = Pr29'G.

Now, we can compose the morphism F — G — F” to get a map F — F”. We will show that
F" € PD%X)20 in Step 4.

Step 3: Construct F'.

There exists a F’ such that we can complete F — F” to the distinguished triangle

Fo>F—=>F"—

We will now use the octahedral axiom of a triangulated category to show that j;7Sdimdi=1cF
F' =i, P7<71'G — is a distinguished triangle.
Octahedral axiom Consider three distinguished triangles

X5y 24
x5z% Y,
Y 5250
such that b = co a. Then there exist morphisms f: A — B, g : B — C such that

PN AV BALLENGTY

is a distinguished triangle and " o f = a”, go b’ =, oc= fod',a[l] 0b” =" o g. This gives

the octahedral diagram:
A
X

=

[1]0”

|
L

N
£
A
A

|
:



where ~~» are the maps +1.
Then our distinguished triangles fit inside the diagram

!
]t'T_ dfl*f{«wmwz p7'< 119 Jt7_7 dtl*fMMNV\MNWZ p7'<1'g

., ~,
/\ L

so that the following is a distinguished triangle:

fl/

. —di -1 - . -1
JurSTdmXe—liaer o F o, PrsTLG

Step 4: Show that F' € PDb(X)<~1
First, consider
]tT, - dim X, — 1*.7—>.7: —>1*pr g

Then since P7571'G € PDY%Z)<~! by Lemma 2.12, then the right term is in PD3(X)S~1.
Similarly, 7S~ dimXe=lixF ¢ pb (X)S—dimX:i—1 g4 by Lemma 2.8 then ji, 7S~ dimXe—l«F ¢
"Dy (X)=t

Claim: ng(X)S_1 is stable under extensions (see Definition 1.7).

Consider A,C € PD%(X)<~! and consider the distinguished triangle A — B — C. Then for
the long exact sequence of cohomology

-— H7YC) - H(A) - H(B) - H'(C) — H"™(A) — ---

Since dimsupp H!(A4) < —i — 1 and dimsupp H*(C) < —i — 1, by exactness dim supp H*(B) must
also be <i —1.

Therefore, 7' € PDb(X)<~1,

Step 5: Show that F” € PD%(X)=0

We will show that jLF” € DP (X, )> dimXs for every s € .. Then by Lemma 2.8 F" €
PDY(X).

First, for s = t, we have the distinguished triangle

i PTG - G = F -

By applying ji, the left term becomes zero so that jiF” = jiG = j*G but we showed j;G =
72— dimXe % T which is in Dlocf(Xt)> dim X,
For s # t, then j, factors as X, SLN X\Xt < X. Then j,! = = (52)"" so
jéf/l_( ) ]_—//N(' ) P >0, |g
Now we can apply induction to show the (j.)' P72%!G € Dp (X)=~dimX., O

Definition 2.13. A Serre subcategory 7 of an abelian category <7 is a full subcategory such that
for any exact sequence 0 - M’ — M — M" — 0, we have M € F <= M' ,M" € 7.

Proposition 2.14. Leti: Z < X be the inclusion of a closed subvariety. The functor i, induces
an equivalence of categories

Perv(Z) — {F € Perv(X) : supp F C Z}

Moreover, the right-hand side is a Serre subcategory of Perv(X).
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Proof. The inverse of i, is given by ¢* then the equivalence is a consequence of Lemma 2.12. To
show Perv(Z) is a Serre subcategory, let 0 — 7' — F — F” — 0 be a short exact sequence.
Suppose F', F" € Perv(Z). Then clearly supp F C Z.
Suppose F € Perv(Z). Let U = X\Z and let i : U < X be the open embedding. Then by
Lemma 2.12, 7* is t-exact so the following sequence is a short exact sequence in Perv(U):

0> i*F 5" F—=i*F" >0

But i*G = G|y and F|y = 0 since it is supported on Z. Then it follows that |y = F”|y = 0 so
that F, F € PervZ. O

Lemma 2.15. For any two objects F € PD%(X)=? and G € PD%(X)=°, we have R#om(F,G) €
Db(X)=0.

Proof. We will prove this using noetherian induction.

Choose a stratification of X such that both F and DF are constructible. Let j : Xy — X
be an inclusion of an open stratum of this stratification. Let ¢ : X \ X; < X. Then by Lemma
2.8, we have that j*F € D} _(U)S=4mU and j*G € Db (U)=~4mU. Then R#om(j*F, j*G) €
D% (U)=°.

Consider the distinguished triangle

ivi' R#om(F,G) — RA# om(F,G) — j.j*RAom(F,G) —

By Lemma 4.8 of Roger’s talk, we know that j*R#Zom(F,G) = R#om(j*F,j*G), and since j is
an open inclusion, j' = j*. Using the dual projection formula from Hyungseop’s talk [7], we can
get the distinguished triangle

inRAom(i*F,i'G) — RAom(F,G) — j.RAom(j*F,j*G) —

But j, is the right derived functor of j* and R om(5*F,j*G) € D%(U)Z° so that j, R om(j*F,j*G) €
D?(X)Z0 as well.

By Lemma 2.12 we have i* F € ?Db(X\ X,)=0 and #'G € PD%(X \ X,)=°. Here we use induction
to conclude that RsZom(i*F,i'G) € D%(X \ X,)Z°. Since i, is the right derived functor of i,,
then i, R om(i*F,i'G) € D2(X)Z0 as well. Hence the middle term of the distinguished triangle
is also in D%(X)Z%, which is what we wanted to prove. O

The next four results tell us which functors on D®(X) are t-exact for the perverse t-structure.

Lemma 2.16. The Verdier duality functor D : D%(X)°P — DY(X) is a t-ezact for the perverse
t-structure.

Proof. We need to show that D (le;(X)OPZ()) C PD(X)2° and D (pDQ(X)OPSO) C PDb(X)=0.

But by definition
FerDl(X)"' < DFerDy(X)™’

so that D is obviously left t-exact.
But if DF € PD%X)2% then D2F € PD%(X)=Y but D>F = F so that the Verdier duality
functor is also right t-exact. O

Proposition 2.17. Let f : X — Y be a finite morphism. The functor f. : DY%(X) — D%(Y) is
t-ezxact for the perverse t-structure.

Proof. Exercise. O

Lemma 2.18. Let X be a variety and let L be a local system of finite type on X. The functor
(-)® L : DYX) — Db(X) is t-exact for the perverse t-structure.

Proof. Exercise. O

11



Lemma 2.19. The functor K is t-exact for the perverse t-structure
Proof. Exercise. O

Example 2.20. As in Example 1.4, let S be the stratification of P! where S = {{0}, A'} and let
jo : {0} = P! and ju1 : A < P! be the inclusions. We will show that the torsion-pair t-structure
on D(Shs(P)) is equivalent to the perverse t-structure.

The heart C of the torsion-pair t-structure is

C={(Ve s Wa) : HO(Va 5> W) =V = 0, H (Vs - W) =V < W}

As objects, these are just the diagrams

0 V., Vo 0
0 — W 0 0

and the morphisms are still quasi-isomorphism of the chains.
Consider the perverse t-structure on P! and suppose F € Perv(P!).
Then F € PD%(P1)<Y so by Lemma 2.8, then

]S‘FE D?ocf({o})go jgl‘/—:e Dfocf(Al)Sil

Since j§F = Ve, then we have that H*(V,) = 0 for ¢ > 0. Since j;, F = W,, then H (W) = 0 for
7> —1.
Again, as F € PD%(P')=% so by Lemma 2.8, then

.7(|)]:E Dfocf({o})zo j,{klj:e leocf(Al)Z_l

Since j1 is an open embedding, 7}, = ji,. Hence HY(W) =01if i < —1.
Claim: For F = (V, — W,) € D%(PY), H(j).F) = ker(H'(V4) — H'(W,))Dcoker(H+(Vy) —
HiTYW)).

Proof. Exercise: Hint use adjunction or spectral sequences. O

Since H*(V) = 0 for i > 0, then H'(j{F) = 0 for i > 0 and hence the only possibly nonzero
term is H°(j)F) since joF € Db ({0})=0.

Consider H~Y(j5F) = ker(H=*(V,) — H~Y(W,)) = 0. Then H~!(V,) — H~1(W,) must be
injective. Thus these t-structures are equivalent.

2.1 Intersection homology theory
2.1.1 Intersection Homology following [5]

Following [5] and [8], we will define the intersection homology of algebraic varieties. This homology
theory is a homology on singular spaces that satifies the Poincaré duality, whereas the usual
singular homology does not.

Let X be a variety. Let (X;)se.» be a stratification of X and suppose that X has a triangulation
such that each X is a union of simplices. We will consider simplicial chains on X.

Let C¥(X) be the set of all locally finite simplicial i-chains on X with respect to the trian-
gulation 7', which is the set of formal linear combinations & =Y _ . . ... &,0 where for every
x € X, there exists an open set U, with x € U, such that the set {&, : & # 0,0 Y(U,) # 0} is
finite.

Definition 2.21. For a locally finite £ = Y &,0 € CT(S), the support |¢] of € is the union of
the closures of all such ¢ such that &, # 0.
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An intersection i-chain on X with respect to T is a (dime X — i)-chain & € Cl,. x ;(X)
such that
dlmR(E‘ N XS) < —i+dimec X, —1
dimg (]0¢| N X,) < —i 4+ dimg X — 2
for s € . such that dim¢ X, < dime X — 1. ‘
The set of all intersection i-chains with respect to T' is denoted ICH(X) C C(:gimc x—i(X). By

taking the direct limit under refinement of triangulations of X, we obtain the space ICi(X ) the
set of intersection i-chains of X.

The boundary maps in for the simplicial chains restrict to maps on the intersection chains so
that we have a complex IC*(X). Now we can define the intersection homology groups.

Definition 2.22. The i*" intersection homology group of X is

ker(ICH(X) 2 10i-1)
coker(IC*1(X) 9, IC%)

TH (X) =

These groups are nonzero for ¢ = —dim¢ X, ..., dim¢ X.

Remark 2.23. Intersection homology theory can be defined in a more general setting, in particular
when X is a psuedomanifold.

2.1.2 The IC sheaf defined in [6]

In their next paper [6], Goresky and MacPherson defined the IC sheaf as an element of D?(X),
we will denote it by ICx.

We have defined the complex IC4(X). To turn this into a complex of sheaves, for every
V C U open we need a restriction map from IC% (U) — IC% (V). The natural map goes from
ICH (V) — IC*(U) so we need to use barycentric subdivision to define this restriction map.

Let V C U and consider an i-simplex o € IC*(U). We want to define o]y = > .c; T for some
set of simplices J C IC*(V).

If im(o) C V set J = {o}. If im(0) ¢ V, preform a barycentric subdivision of o and consider
every 7 in the subdivision of . If im(7) C V, then add 7 to the set J. If im(7) ¢ V, then preform
a barycentric subdivision of 7 and repeat the process of adding i-simplicies of this subdivion to J
if their image is in V' and preforming a barycentric subdivision if their images are not in V.

In this way, we define J and so we set o|y = > ;7. For arbitrary £ € IC*(X), let {|y =

ZaGICi(X) §o0lv.
We can define the ICx sheaf by

IC% (U) = ICYU)

with restriction map defined above. This commutes with the boundary map on chains (9¢)|V =

9(&]v) so that we have a boundary operator on this sheaf. Thus we have a complex of sheaves
IC%.

Lemma 2.24. The IC sheaves IC} are soft for all i <0 so that
H*(X,IC%) =1H*(X,C)

In the following section, we will we that ZC'®(X) lies in Perv(X) when X is complex algebraic
variety.
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2.1.3 IC sheaves
In this section, we give a sheaf theoretic definition of the IC sheaf, without using topology.

Definition 2.25. Let h : Y — X be a locally closed embedding. The intermediate-extension
functor is the functor
hi, : Perv(Y) — Perv(X)

given by
hi (F) = im(PH®(WF) — PHO(h.F))

Remark 2.26. By definition, there are morphisms PH(hF) — hi(F) and hy, (F) — PHO(h,F).

Definition 2.27. Let X be a variety, Y C X a smooth, connected, locally closed subvariety and
let h : Y < X be the inclusion. Let £ be a local system of finite type on Y. The intersection
cohomology complex associated to (Y, L) is the perverse sheaf

IC(Y, L) = h.(L[dim Y])
Remark 2.28. Recall that £][dim Y] is perverse so that Ay, is indeed a map from Perv(Y).
The main goal of this section is to prove the following theorem.
Theorem 2.29 (Theorem 4.2.17 of [1]).

1. IfY C X is a smooth, connected locally closed subvariety and L is an irreducible local system
on'Y, the IC(Y, L) is a simple object in Perv(X). We will call these simple intersection
cohomology complexes.

2. Every perverse sheaf admits a finite filtration whose subquotients are simple intersection
cohomology complexes.

3. Every simple object in Perv(X) is of the form described in 1.

Example 2.30. Consider X smooth, connected and consider the local system Cy. Then IC(X,Cy) =
Cy [dim X].

Example 2.31. Consider P! with the standard stratification {{0}, A'}. We consider the locally
closed subvarieties {0}, A!. Then we have the simple intersection cohomology complexes:

IC({0},C) = jo..(C) = C° since jo is proper
IC(A',Cy1) = Cp1[1] by Example 2.30

which are, respectively, the following objects

0——C C——0
j )
0 C

Example 2.32. Let G be an algebraic group, let B C G be a borel subgroup. Then G/B has
the Bruhat stratification, with strata BwB/B = C*®), The simple cohomology complexes are
IC(BwB/B,C) = hi,C[¢(w)]. The category Perv(X) is equivalent to the BGG category O.

The following two lemmas tell us why we should consider the intermediate-extension functor.
Lemma 2.33. Let h: Y — X be a locally closed embedding.
1. For F € Perv(Y'), there is a natural isomorphism h*h F = F.

2. For F € Perv(Y), the object hy, F has no nonzero subobjects or quotients supported on Y\Y .
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Proof. For (1), let F € Perv(Y). Without loss of generality, we can assume that X =Y as
supp hyF,supp iiF C Y. Now h is an open embedding.
h*hy F = h*(im(PH® (WF) — PH(h.F)))
= im(h* PH(WF) — h*PH(h.F)), [since h* is t-exact by Lemma 2.12]
= im(PH(h*F) — PH(h*h.F))
Since h is an open embedding, then h*mF = h*h, = F and PHO(F) = 720750F = F since F
is a perverse sheaf. So
W hy F =< im(F 2% F) = F

For (2), we will let Z = X\Y and let ¢ : Z < X be the inclusion map. We will show that hy,F
has no quotients supported on Z, and the case of subobjects will follow from Verdier duality.

Suppose that G € Perv(X) such that G is a quotient of h;,F, i.e. there is a surjective
map h;,F — G. Consider the natural map PHO(mF) — hy,F, then we have a surjective
map PH°(hF) — G. But by Lemma 2.12, iF € PDY%X)=0 so that 7<nF = JF and
hence PHO(h\F) = 729 F. Then this surjective map PH°(hF) — G is in Hom(7=hF,G) =
Hom(hF,G) where the latter isomorphism holds by the adjunction property of 7=9.

But by Prop 2.14, there exists H € Perv(Z) such that G =4, H so that this map is in

Hom(hF,i*H) = Hom(F, h'i. H)
by the adjunction of k. But h'i,H = 0, which contradicts that G # 0. O

Lemma 2.34. Let h: Y — X be a locally closed embedding.
The functor hy, : Perv(Y) — Perv(X) is fully faithful. For F € Perv(Y') the object hy,F is the
unique perverse sheaf (up to isomorphism) with the following properties:

1. It is supported on Y .
2. Its restriction to Y is tsomorphic to F.
3. It has no nonzero subobjects or quotients supported on Y \Y

Proof. Without loss of generality, let X = Y. Let i : Z < X be the complementary closed
embedding of h. Let Perv®(X) be the set of perverse sheaves on X which have no nonzero
subobjects or quotients supported on Z.

We will show that h* : Perv®(X) — Perv(Y) is fully faithful, then by the previous lemma,
h*hy F = F so that hy, is a right inverse of h* and hence also fully faithful. So all we need to
show is that Hompe,vo(x)(F,G) = Hompery (v (h*F, h*G).

Step 1: Obtain a long exact sequence with Hom(F, G) and Hom(h*F, h*G).

Let F € Perv®(X) and consider the distinguished triangle

hh*F — F = 04" F —

Let G € Perv®(X) and apply Hom(—, G) to get the long exact sequence

.-+ = Hom(hmh*F[1],G) — Hom(i.i* F,G) — Hom(F,G) — Hom(mh*F,G) —
— Hom(i i*F[-1],G) — ---

By adjunction and using »* = k' and i, = i, this complex coincides with

.-+ — Hom(h* F, h*G[—1]) — Hom(i* F,i'G) — Hom(F,G) — Hom(h*F,h*G) —
— Hom(i* F,i'G[1]) — --- (1)

We want to show all the terms except Hom(F, G) and Hom(h*F, h*G) are zero.
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Step 2: For F € Perv®(X), show i*F € ?Db(Z)<~! and i'F € PDb(X)=L.
Since F € Perv(X), then using Lemma 2.12, we see that i,i*F € PD%(X)=0 and hh*F €
PDb(X)<0. By applying PH?, we get the long exact sequence,

— PHY(F) — PH(i,i* F) — PHO(Wh* F[1]) —

But mh*F[1] € PDb(X)<~1 so that 72°h h* F[1] = 0. Then PH®(hyh*F[1]) = 0 and so PH°(F) —
PHO(i,i*F) is surjective. But PH?(i,i*F) is supported on Z so since PH°(F) = F has no
nonzero quotients supported on Z, then PHC(i,i*F) = 0, which means i,i*F € PDY(X)S~L
By Proposition 2.14, i, is an equivalence of categories so i, is t-exact and fully faithful so in fact
*F e PDb(Z)<1

Similarly, by using the distinguished triangle i,i'F — F — h,h*F —, we show that i'F €
Ppb(Z)21 for F € Perv®(X).

Step 3: Show Hom(h*F,h*G[—1]) =0

By Lemma 2.12, h* is t-exact so h*F € PD%(X)=°, and h*G[-1] € PD%(X)=!. Then it follows
that Hom(h*F, h*G[—1]) = 0.

Step 4: Show Hom(h*F,i'G) =

By Lemma 2.12, i*F € pr(Z)S and Step 2, i'G € PD%(Z)Z! so that Hom(i* F,i'G) = 0.

Step 5: Show Hom( *F,i'G[1])0

By Step 2, i*F € pr(Z) ~Land i'G[1] € P D%(Z)2° so that Hom(i* F,i'G[1]) =

Hence, (1) gives that Hom(F, G) = Hom(h*F, h*G) so that h* is indeed fully falthful.

O

Corollary 2.35. Let h : Y — X be a locally closed embedding. The functor hy, takes injective
maps to injective maps and surjective maps to surjective maps.

Proof. Exercise. O

Proposition 2.36. Let X be a smooth, connected variety of dimension n. The category of
Loc(X)[n] is a Serre subcategory Perv(X).

Proof. For proof, see Proposition 4.2.12 on page 280 of [1]. O
Lemma 2.37. Let F € Perv(X) and let i : Z — X be the inclusion of a closed subvariety.

1. PHO(i,i' F) is the largest subobject of F supported on Z.

2. PHO(i,i*F) is the largest quotient of F supported on Z.

Proof. For part (1), let j : U — X be the complementary open inclusion. Consider the the
distinguished triangle i,i'F — F — j,j*F —. By Lemma 2.12, j* and i, are t-exact and 3" and 7,
are left t-exact for the perverse t-structure, so all these terms are in P D%(X)Z°. By applying the
perverse zero'™™ cohomology functore, we get a long exact sequence which starts with PHO (4,i' F),
so that PHO(i,i' F) is a subobject.

Suppose G € Perv(X) such that suppG C Z. Then by Proposition 2.14, there is some H €
Perv(Z) such that i,H = G. By applying Hom(G, —) to the distinguished triangle above,

- — Hom(i,H, j.j* F[—1]) = Hom(G, i,i' F) — Hom(G, F) — Hom(i, H, j.j*F) —

By adjunction for j,, the first and last terms become Hom(j*i,H, j*F[—1]) and Hom(j*i.H, j*F)
respectively. But j*i, = 0 so that these terms are zero. Then each map G — F factors uniquely
through G — 4,4'F. Since G, F € PerV(X) and i.i'F € pr(X)>° then when we apply P7=0 to
these maps, we have a unique map G — P7=%,4'F = PHO(i,i' F) which makes the diagram in the
lemma commute.

For part (2), the proof is analogous. O
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Example 2.38. Let X be smooth and let £ be a local system on X. Then for h: U < X a dense
open subspace, by Lemma 2.34, hy.(L[dim X])|y = £[dim X]|y and it has no nonzero subobjects
or quotients supported on X \ U. By the universal property in Lemma 2.37, the largest subobject
supported on X \ U is PHO(i,4'£[dim X]) = 0 where i : X \ U < X. Similarly, there are no
nonzero quotients on £[dim X] supported on X \ U so that IC(U, L|y) = L[dim X].

Lemma 2.39. Let X be an irreducible variety. Let j : U — X be the inclusion map of an open
subset. Let i: Z — be the complementary closed subset. Let F € Perv(X).

1. If F has no nonzero quotients supported on Z, then there is a natural short exact sequence

0—PH(i,i' F) = F = j1.(Flu) = 0

2. If F has non nonzero subobject supported on Z, then there is a natural short exact sequence

0— ji,(Flv) = F = PH(i,i*F) = 0

Proof. For part (1), suppose F has no nonzero quotients supported on Z. Consider the injective
map PH°(i,i'F) — F given in Lemma 2.37 and let K be the cokernel of this map. We want to
show that ji, (Flv) = K.

Since I is a quotient of F, it is not supported on Z and has no quotients supported on Z. By
the universal property of the injective map, K has no nonzero subobjects supported on Z. Finally,
since K|y & F|y then by Lemma 2.34, this object must be 7, F|y. O

Lemma 2.40. Let Y C X be a smooth, connect, locally closed subvariety. Let 0 — L' — L —
L" — 0 by a short exact sequence of local systems on Y. Then IC(Y,L) admits a three step
filtration

0=F9gCF1 CFs C.F3=IC(Y,[,)

such that F1 2 1C(Y, L"), F3/Fs 2 IC(Y, L") such that Fa/F, is supported on Y\Y .

Proof. Let h : Y — X be the inclusion. By Corollary 2.35, hi, takes injective maps to injective
maps and surjective maps to surjective maps so that we have the maps

IC(Y, £y L 10(Y, £) —2s 1C(Y, L")

Since these maps come from a short exact sequence and hy, is a functor, then g o f = 0 and
hence im(f) C kerg. Set F1 = im(F) so that F; = IC(Y,L’) and set Fo = ker(g) so that
IC(Y, L)/ Fo =2 IC(Y, L£"). All that is left is to show that F»/F; is supported on Y\Y. Clearly,
the support is contained in Y. We want to show that (F2/F1)|y = h*(F2/F1) = 0. But when we
apply h* to the sequence above, since h*hy F = F, then

£/[dimY] < £[dim Y] —» £"[dim Y]

which is the original short exact sequence so that ker(g)ly = im(f)|y. Then it follows that

(F2/F)ly = ker(g)|y /im(f)|y = 0. )

Proposition 2.41. FEvery perverse sheaf admits a finite filtration whose subquotients are inter-
section cohomology complezes.

Proof. We proceed by Noetherian induction.

Let F € Perv(X). Let . be a stratification that F is constructible with respect to. Let U be
an open stratum of % and j : U — X be the inclusion. Let ¢ : Z < X be the complementary
closed inclusion.
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Then j*F = Fly € Perv(U) so by Example 2.7, since j*F is constructible with respect to
the trivial stratification, then j*F 2= £[dim U] for some local system on U. Apply Lemma 2.37 to
consider the short exact sequence

0—PH(i,i' F) - F > K

where K is the cokernel of the injective map PH°(i,i'F) — F. Since PH°(i,i'F) is supported on
Z, then we can apply the induction assumption to see that PHC(i,4' F) has a finite filtration whose
subquotients are intersection cohomology complex. We will now show that the cokernel K also
has such a filtration and thus F does as well.
Since PHO(i,i' F) is supported on Z, when we apply j* to the distinguished triangle above, we
get
0=j*"F—=jK—=0

Hence j*K & j*F = L][dim U]. By the universal property from Lemma 2.37, K has no subobjects
supported on Z and so we may apply Lemma 2.39 to K.

0= 4. (Kly) = K = PH(i,i*K) = 0

Again, by induction PH(i,i*K) has a finite filtration whose subquotients are intersection coho-
mology complexes and the first term is a intersection cohomology complex and thus K has such a
filtration as well. U

Remark 2.42. Proposition 2.41 implies that every simple object in Perv(X) is an IC sheaf of a
local system.

Proof of part 1) of Theorem 2.29. We want to show that IC(Y, £) is a simple object in Perv(X),
i.e. we need to show there are no non-trivial subobjects.

Suppose that F C IC(Y, £) is a nonzero subobject. Then by Proposition 2.14, we can assume
that X =Y so that h: Y — X is an open embedding. Since F is not supported on X \ Y, then
h*F # 0. h* is t-exact so h*F is a subobject in L]dim X].

By Proposition 2.36, Loc(X)[dim X] is a Serre subcategory and thus closed under taking sub-
objects. So h*F is a sub-local system of £[dim X] and hence it coincides with £[dim X]. Then the
cokernel of F inside IC(Y, £) is supported on X \ Y, but IC(Y, £) has no subquotients supported
on X \ 'Y by Lemma 2.34 so that the cokernel must be zero. Hence F 2 IC(Y, L).

O

Proof part 2) of Theorem 2.29. We proceed by Noetherian induction. We assume that the state-
ment is true for all proper closed subvarieties of X.

By Proposition 2.41, we only need to prove that IC(Y, £) has a finite filtration whose subquo-
tients are simple intersection cohomology complexes.

Pick y9 € Y. Then by the correspondence between local systems and representations of
m1(Y,y0), L correspondes to a finite dimensional representation M. Since M is a representation,
it has a finite filtration whose subquotients are irreducible representations and thus by this cor-
respondence, £ has a finite filtration by sub local systems such that the quotients are irreducible
local systems. Now we apply Lemma 2.40 multiple times to get quotients that are either IC sheaves
of irreducible local systems or quotients supported on Y\Y. The former are simple IC sheaves
while the later have the desired filtration by induction. O

Proof of part 8) of Theorem 2.29. This follows from Remark 2.42. O

Lemma 2.43 (Duality). Let Y C X be a smooth, connected, locally closed subvariety and let £
be a local system on Y. Then there is a natural isomorphism

D(IC(Y, £)) 2 IC(Y, £Y)

Finally consider the following lemma:
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Lemma 2.44 (Lemma 4.2.8 of [1]). Let F € Perv(X). Let (Xy)scr be a stratifications such that
both F and DF are constructible with respect to . Let u € . and let L be a local system of
finite type on X,. The following conditions are equivalent:

1. F2IC(X,, L)

2. We have supp F C X, and F|x, = L[dim X,,| and for each stratum X; < X, if j; : Xy — X
we have

]:‘F € D?ocf(Xt)S_dith_l ]t"F € D?ocf(Xt)Z_dith+1

Proof. For proof, see Lemma 4.2.8 of [1]. O

Remark 2.45. This lemma shows us that for IC sheaves, the requirements for cohomology van-
ishing is one degree stricter than for general of perverse sheaves.

Theorem 2.46. ICx = IC(Y,C), where Y is any smooth subset of X and ICx is as defined in
section 2.1.2.

Sketch of proof. We prove that ICx satisfies part 2. of Lemma 2.44 when £ = Cx,. For conve-
nience, let n = dim¢ X.

Step 1: Prove that ICx|x, = C[n].

Consider ICx|x,. Then there are no added conditions on |£| N X, by definition, so every
i-intersection chain is just an (n —i)-chain. Let C'*® be the sheaf of locally finite i-chains on X, so
that ICX|XH, =C".

Let S'(X,) be the group of singular i-cochains with coefficients in C and let S® be the chain
complex. Since X, is locally contractible, then using the proof of Theorem 3.15 from Roger’s talk
3], §** = Cy, are quasi-isomorphic. For U C X, open, we have a map S?"~“(U) — C;(U) by
a+— [U]Na, where [U] is the fundemental class of U. This induces a map S?"~4+(U) — C;(U) =
IC""(U). By Poincaré duality, this is a quasi-isomorphism and hence S*%[n] = ICx |x, so that
it follows that Cy [n] =ICx

Xu-
Remark 2.47. It is a more general fact that wx = C°.

Step 2: Prove that H'(j; ICx) =0 for all i > — dim X; — 1.

For this proof, we follow [6]. Consider X; and let i, : {x} — X be the inclusion of some
x € Xt.

fact: For X a complex variety and Xy C X smooth, there exists an N C X open such that
x € N and there exists some L, such that R24mXs x cone(L,) = N.

Claim: The stalk at € X; of H*(ICx) is given by

—i—dim X, —1 ; ;
B (ICx) = {IH THLe) i dim X, -1
1> —dim X,

Idea of proof: If i > —dim X; — 1, then —i < dim X; + 1, then any intersection i-chain £ will have

So ¢ intersections X, in a subset of dimension less that dimg X;. By transversailty, it can be
moved away from {z}. Thus £ = 0 in the local homology group.

If i < —dim X; — 1, the idea is that dimg(]¢] N X;) > dimg X; so that any cycle that contains
{z} also contains a neighborhood of {z}. This means that locally this intersection homology looks
like RYI™ Xt x cone(L,).

So we know for every z € Xy, itH'(ICx) = 0 for i > —dim X; or, equivalently, for i <
—dimX; — 1. As H'(i:ICx) = i* H'(ICx), then we have for every z € X;, H'(i:ICx) = 0
when i < dim X; — 1. But since this is true for every r € X;, then H'(j; ICx) = 0 for all
1< —dim X; — 1.

Step 3: Prove that H'(j;ICx) = 0 for all i < —dim X; + 1.

We will omit this step. O
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Remark 2.48. Recall that H(X,IC%)) = I H;(X,C), where IC% = IC(Y,C) for some smooth
Y. Define IH.(X) := H'RT.(IC%). Then D(IC(Y,C)) 2 IC(Y,C)) so that D(ICx) = ICx. Also,
we know fiolD =Do f, so since RI' = ax, and RI['. = ax then

TH(X)=H(ICx)
= H'RT.D(ICx)
= H'DRT(ICx)
= H'RT(ICx)*
=IH "(X)*

so that intersection homology obeys Poincaré duality.

2.2
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2.
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