
AFFINE PUSHFORWARD AND SMOOTH PULLBACK FOR PERVERSE
SHEAVES

YEHAO ZHOU

Conventions

In this lecture note, a variety means a separated algebraic variety over complex numbers,
and sheaves are C-linear.

1. Homological bounds for pullbacks and pushforwards

In this section, our goal is to understand what nonzero perverse cohomology can appear
when applying f ∗, f !, f∗, and f! to a perverse sheaf. The main result is

Theorem 1.1. Suppose f : X → Y is a morphism such that the dimensions of fibers of f
are ≤ d. Put perverse t-structures on Dc(X) and Dc(Y ), then

• f ∗[d] and f![d] are right t-exact, i.e. ∀i > d, pHif ∗K = 0 and pHif!L = 0 for
K ∈ Perv(Y ) and L ∈ Perv(X);
• f ![−d] and f∗[−d] are left t-exact, i.e. ∀i < −d, pHif !K = 0 and pHif∗L = 0 for
K ∈ Perv(Y ) and L ∈ Perv(X).

and there are adjoint functors between perverse sheaves

pHdf ∗ : Perv(Y ) � Perv(X) : pH−df∗
pHdf! : Perv(X) � Perv(Y ) : pH−df !

Specialize to d = 0 and we get

Corollary 1.2. If f : X → Y is a quasi-finite morphism between varieties, then f ∗ and f!
are right t-exact, f∗ and f ! are left t-exact.

Before we start proving the main result, let’s work out some lemmas on t-exactness, which
are standard for ordinary perversity on derived category of sheaves. Suppose that D1 and
D2 are two triangulated categories with t-structures, D♥1 and D♥2 are their abelian hearts,
F : D1 → D2 is a triangulated functor.

Lemma 1.3. If G : D2 → D1 is left adjoint to F , then F is left t-exact if and only if G is
right t-exact.

Proof. Suppose that F is left t-exact, then for any X ∈ D≤02 , we have truncation triangle

τ≤0GX → GX → τ≥1GX →

in D1, by adjunction we have

HomD1(GX, τ
≥1GX) ∼= HomD2(X,Fτ

≥1GX) = 0
1
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since Fτ≥1GX ∈ D≥11 . It follows that the distinguished triangle splits and τ≤0GX =
GX ⊕ τ≥1GX[−1], in particular there is a nontrivial map τ≤0GX → τ≥1GX[−1]. How-
ever HomD1(τ

≤0GX, τ≥1GX[−1]) = 0 hence τ≥1GX[−1] = 0, i.e. GX ∈ D≤01 .
The converse is the same statement for opposite categories. �

Lemma 1.4. If G : D2 → D1 is left adjoint to F , and F is left t-exact, then H0G : D♥2 → D♥1
is left adjoint to H0F : D♥1 → D♥2 .

Proof. By Lemma 1.3, F is left t-exact. For any X ∈ D♥2 and Y ∈ D♥1 , use the truncation
triangle for GX

τ≤−1GX → GX → H0GX →
and the fact that HomD1(τ

≤−1GX, Y ) = 0, we have

HomD♥1
(H0GX, Y ) = HomD1(GX, Y )

and similarly
HomD♥2

(X,H0FY ) = HomD2(X,FY )

and the ajointness between H0G and H0F follows from the above two isomorphisms and the
adjunction between G and F . �

The next lemma is about the behaviour of t-exactness under a dualizing functor. Recall
that a dualizing functor on a triangulated category D with t-structure (D≤0, D≥0) is a t-exact
functor D : Dop → D such that

• D maps D≤0 to D≥0;
• D2 ∼= Id.

Note that D2 ∼= Id implies that D is an auto-equivalence, in particular Hom(DX,DY ) ∼=
Hom(Y,X).

Lemma 1.5. Suppose that Di has dualizing functors Di, define F! := D2 ◦F ◦D1, then F! is
right (resp. left) t-exact if and only if F is left (resp. right) t-exact.

Proof. Exercise. �

Proof of Theorem 1.1. We first show that f ∗[d] is right t-exact. By definition of perversity,
∀K ∈ Perv(Y ), dim(Supp(Hi(f ∗K))) ≤ dim(Supp(Hi(K))) + d ≤ d − i, i.e. f ∗K[d] ∈
pD≤0c (Y ), so f ∗[d] is right t-exact. f∗[−d] follows from applying Lemma 1.3 to adjunction
f ∗[d] a f∗[−d], f![d] follows from applying Lemma 1.5 to Verdier duality isomorphism f![d] ∼=
DY ◦f∗[−d]◦DX , and f ![−d] follows from applying Lemma 1.3 to the adjunction f![d] a f ![−d].
Finally, the statement about adjoint functors between perverse sheaves comes from applying
Lemma 1.4 to adjunctions f ∗[d] a f∗[−d] and f![d] a f ![−d]. �

2. Affine pushforward

For a general morphism between varieties f : X → Y , one would expect that f∗ is left
t-exact up to degree shift and according to Lemma 1.5 f! is right t-exact up to degree shift.
Nevertheless, for affine morphisms, more can be said:

Theorem 2.1. If f : X → Y is an affine morphism between varieties, then f∗ is right t-exact
and f! is left t-exact.
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Combine this theorem with Corollary 1.2 and we get

Corollary 2.2. If f : X → Y is a quasi-finite affine morphism between varieties, then f∗
and f! are t-exact.

Example 2.3. Let j : C× → C be the natural open immersion, it’s affine since C× is. Then
we have seen that j!C[1] and j∗C[1] are perverse sheaves, which agrees with the theorem.
However, let k : C2 − {0} → C2 be the natural embedding, it’s not affine because C2 − {0}
is not affine. Then we have distinguished triangles

j!C[2]→ C[2]→ C{0}[2]→ ; C{0}[−2]→ C[2]→ j∗C[2]→
Suppose that j!C[2] is perverse, applying pH∗ to the first distinguished triangle, we find that
0 → C{0}[2] → 0 is exact, which is absurd, hence j!C[2] is not perverse; similarly, suppose
that j∗C[2] is perverse, then 0 → C{0}[−2] → 0 is exact, which implies that j∗C[2] is not
perverse.

We will provide the proof of the right t-exactness of f∗ in the following subsection and
the left t-exactness of f! follows from the Verdier duality. Roughly speaking, we will first
prove a nonvanishing property of HdimX(U, F ) for some open affine U (Lemma 2.7), use it
to deduce a cohomological criterion for an object to lie in pD≤0 and pD≥0 (Proposition 2.9),
then prove the theorem by this criterion.

Cohomology on affine open subschemes. Before we start, let’s recall a result on homo-
logical bound in Balazs’ talk [Ele18]

Lemma 2.4. Let X be a variety of dimension d, and let F be a constructible sheaf on X.
Then Hi(X,F ) = Hi

c(X,F ) = 0 for i > 2d; moreover, if X is affine, then Hi(X,F ) = 0 for
i > d.

As a corollary to the first part of the lemma, we have the following homological bound on
pushforward (exercise):

Corollary 2.5. Let f : X → Y be a morphism between varieties, F is a constructible sheaf
on X, then Hif∗F = Hif!F = 0 for i > 2 dimX.

As a corollary to the second part of the lemma, we have the following homological bound of
constructible sheaves on affine varieties (exercise):

Corollary 2.6. Let X be an affine variety, F is a constructible sheaf on X, then Hi(X,F ) = 0
for i > dim Supp(F ).

Now let’s prove a nonvanishing result about constructible sheaves on affine varieties

Lemma 2.7. Let X be a variety, and let F be a nonzero constructible sheaf on X. If
dim(Supp(F )) = n, then there exists an affine open subset U ⊂ X such that

Hn(U, F |U) 6= 0

Proof. Shrinking X if necessary, we can assume that X is affine. Let Z = Supp(F ), so Z is
a closed subvariety of X thus it’s affine.
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Step 1. Assume that Z = X = Cn. Pick a point i : x ↪→ Cn such that F is a local
system in an open neighborhood of x. Up to a translation, we can assume that x is the
origin. Denote the coordinate system on Cn by {x1, x2, · · · , xn}, we are going to prove that
Hn(D(x1x2 · · ·xn), F |D(x1x2···xn)) 6= 0, where D(f) means the open locus where the function
f does not vanish. On the one hand, i∗i

!F = i∗i
∗F [−2n] 6= 0, and the exact sequence

H2n−1(X − x, F )→ H2n(X, i∗i
!F )→ H2n(X,F )

indicates that H2n−1(X−x, F ) 6= 0 (X is affine, so by the cohomology bound of affine variety,
the last term is zero). On the other hand, note that X − x =

⋃n
i=1D(xi), so we have Čech

spectral sequence:

Epq
1 =

⊕
I⊂{1,...,n}
|I|=p+1

Hq(D(xI), F ) =⇒p Hp+q(X − x, F )

where xI :=
∏

i∈I xi. Since Epq
1 is nonzero only for 0 ≤ p ≤ n − 1 and 0 ≤ q ≤ n, the

maximal degree term in the LHS is Hn(D(x1x2 · · ·xn), F ) of total degree 2n− 1 which must
be nonzero.

Step 2. Assume that Z = X. By Noether’s normalization theorem, there exists a finite
morphism φ : X → Cn. We have Supp(φ∗F ) = Cn, so there is an open affine subvariety
U of Cn such that Hn(U, (φ∗F )|U) 6= 0, according to step 1. Hence Hn(φ−1U, F |φ−1U) =
Hn(U, (φ∗F )|U) 6= 0.

Step 3. For the general case k : Z ↪→ X is a closed embedding. In step 2 we have proven
that ∃U ⊂ Z of the form D(f) such that Hn(U, (k∗F )|U) 6= 0. Lift f to an element g in the
coordinate ring of X so D(g)

⋂
Z = D(f), then we have Hn(D(g), F ) = Hn(D(f), k∗F ). �

Lemma 2.8. Let X be an affine variety, and let F ∈ pD≤0c (X), then RΓ(X,F ) ∈ D≤0c (pt),
equivalently Hi(X,F ) = 0 for i > 0. Moreover if F /∈ pD≤−1c (X), then there exists an open
affine subvariety U ⊂ X such that H0(U, F |U) 6= 0.

Proof. For the first part, note that we have a convergent spectral sequence

Epq
2 := Hq(X,Hp(F )) =⇒p Hp+q(X,F )

By definition of pD≤0, dim Supp(Hp(F )) ≤ −p, so according to Corollary 2.6, Epq
2 vanishes

if q > −p, i.e. p+ q > 0. As a result, Hp+q(X,F ) = 0 for p+ q > 0.
For the second part,if F /∈ pD≤−1c (X), then pτ≥0F 6= 0. Note that since F ∈ pD≤0c (X),

pτ≥0F ∈ Perv(X). Let us note that H0(U, F |U) 6= 0 if H0(U,K|U) 6= 0 for a simple quotient
K of F . Indeed, consider the short exact sequence

0→ G→ F → K → 0

where K is a simple perverse sheaf, if there exists an open affine subvariety U ⊂ X such that
H0(U,K|U) 6= 0, then H0(U, F |U) 6= 0, since H1(U,G|U) = 0. So it’s enough to prove the case
when F is simple, i.e. F = IC(V,L) where V is smooth subvariety and L is an irreducible
local system on V .

By replacing X with the Zariski closure of V (which is closed in X thus is also affine), we
can assume that V is open and dense in X. Shrink V if necessary, we can assume that V
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is affine. Accoring to Lemma 2.7, there exists an affine open subvariety U of V such that
H0(U,L|U [dim(V )]) 6= 0 and we win. �

Proposition 2.9 (A Criterion for Half Perversity). X is a variety and K ∈ D−c (X), then
following statements are equivalent

(1) K ∈ pD≤0c (X)
(2) For all open affine subvariety U ⊂ X, and RΓ(U,K|U) ∈ D≤0c (pt)

Proof. (1)⇒ (2): This follows from Lemma 2.8;
(2)⇒ (1): Since K ∈ D−c (X), i.e. there exists an integer m such that K ∈ D≤mc (X),

thus ∀i ∈ Z, dim(Supp(HiK)) ≤ m + d − i, i.e. K ∈ pD≤m+d
c (X). So there exists the

smallest integer n such that K ∈ pD≤nc (X). Since K /∈ pD≤n−1c (X), according to Lemma
2.8, there exists an affine open subvariety U ⊂ X such that Hn(U,K|U) 6= 0. Now condition
in (2) implies that n must be non-positive and (1) follows. �

Remark 2.10. If L ∈ D+
c (X), apply the Verdier duality to the lemma, then following state-

ments are equivalent

(a) L ∈ pD≥0c (X)
(b) For all open affine subvariety U ⊂ X, and RΓc(U,L|U) ∈ D≥0c (pt)

Proof of Theorem 2.1. Suppose K ∈ pD≤0c (X). Since f∗ has finite cohomological dimension
(Corollary 2.5), we see that f∗K ∈ D−c (Y ). For any open affine subcheme U ⊂ Y ,

RΓ(U, f∗K|U) = RΓ(f−1U,K|f−1U)

Since f is an affine morphism and U is affine, f−1U is also affine, by Proposition 2.9,
RΓ(f−1U,K|f−1U) ∈ pD≤0c (pt), i.e. RΓ(U, f∗K|U) ∈ pD≤0c (pt). By Proposition 2.9 again,
f∗K ∈ pD≤0c (Y ). �

3. Smooth pullback

Suppose f : X → Y is a smooth morphism between varieties of relative dimension d, then
f ! = f ∗[2d], or equivalently f ∗[d] = f ![−d]. According to Theorem 1.1, the LHS is right
t-exact, while the RHS is left t-exact, so we have the following

Theorem 3.1. If f : X → Y is a smooth morphism of relative dimension d, then functor
f ∗[d] = f ![−d] is t-exact.

Definition 3.2. If f : X → Y is an smooth morphism of relative dimension d, we define
f † := f ∗[d] : D−c (Y )→ D−c (X) and its right adjoint f† := f∗[−d] : D+

c (X)→ D+
c (Y ).

Remark 3.3. Theorem 3.1 tells us that f † restricts to an exact functor Perv(Y )→ Perv(X).
Moreover, according to Lemma 1.3 and 1.4, we have

Corollary 3.4. f † is t-exact, f† is left t-exact, and we have a pair of adjoint functors between
perverse sheaves:

f † : Perv(Y ) � Perv(X) : pH0f†
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Smooth morphisms with connected fibers.

Theorem 3.5. Suppose f : Y → X is a smooth surjective morphism with connected fibers,
then f ∗ : Shv(X)→ Shv(Y ) is fully faithful and sends irreducible local systems to irreducible
local systems

Proof. In order to prove that Hom(F,G)→ Hom(f ∗F, f ∗G) ∼= Hom(f !F, f !G) is an isomor-
phism, it suffices to prove that adjunction

H0f!f
!F → F

is isomorphism. By proper base change theorem (See Roger’s talk [Bai18]), it’s enough to
check the isomorphism property fiberwise:

i∗xH
0f!f

!F ∼= H2d
c (Yx, Fx)→ Fx

Now the last homomorphism is an isomorphism because of Poincaré duality and the fact
that Yx is connected. This shows that f ∗ is fully faithful. Now let us prove that it sends
irreducible local systems to irreducible local systems.

If L is an irreducible local system on X, and suppose that there is a surjective homomor-
phism of local systems:

φ : f ∗L � M

such that M is not zero. We are about to show that φ is an isomorphism. Pushing forward
φ to the base, we have morphism

ψ : H2df!f
∗L ∼= H2df!C⊗ L ∼= L � H2df!M

which is surjective since H2d+1f! ker(φ) = 0 by the cohomological bound (Corollary 2.5). By
proper base change theorem, it is enough to prove that this epimorphism is an isomorphism
fiberwise. We find (H2df!M)x ∼= H2d(Yx,M|Yx). Notice that φx : f ∗xLx � M|Yx is surjective,
in particular, M|Yx is a constant local system on Yx, therefore H2d(Yx,M|Yx) has the same
rank with M, so H2df!M has constant rank. Now surjectivity of ψ implies that H2df!M is
also a local system, but L is irreducible, so ψ is an isomorphism. �

Remark 3.6. If X is smooth, then there is an easier way to prove the second part of the
theorem: the statement is equivalent to saying that π1(Y ) � π1(X). For proper f , this
follows from Ehresmann’s fibration theorem and the exact sequence of homotopy group
associated to fibration. It’s clear for open embeddings as well (this is the place where we
need smoothness). For general case, we use Nagata’s compactification and embed Y as an
open subvariety into Ȳ which is proper over X, then we apply resolution of singularity to Ȳ
(recall that this can be done in a way that Y is unchanged: by a sequence of blowing up of
subvarieties inside the singular locus Sing(Ȳ ) ⊂ Ȳ −Y ), so we can assume that Ȳ is smooth.
By generic smoothness, there exists an open subvariety U ⊂ X such that Ȳ ×X U → U is
smooth. Combining the open embedding case and locally trivial fibration case, we have

π1(Y ×X U) � π1(Ȳ ×X U) � π1(U) � π1(X)

which factors through π1(Y ×X U)→ π1(Y )→ π1(X), hence π1(Y )→ π1(X) is surjective.
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Remark 3.7. In general, f ∗ is not fully faithful as a functor between derived categories.
For example, if f is the quotient by Gm: C2 − {0} → P1, then HomP1(C,C[3]) = 0 but
HomC2−{0}(f

∗C, f ∗C[3]) = C, HomP1(C,C[2]) = C but HomC2−{0}(f
∗C, f ∗C[2]) = 0, so f ∗ is

neither full nor faithful.

Theorem 3.8. Suppose f : Y → X is a smooth surjective morphism with connected fibers,
then f † is fully faithful and sends simple perverse sheaves to simple perverse sheaves, in fact,
for smooth scheme Z with immersion i : Z ↪→ X and L ∈ Loc(Z)

f † IC(Z,L) = IC(f−1Z, (f |f−1Z)∗L)

Proof. By definition, IC(Z,L) is the intermediate extension of L, i.e. there is a sequence of
perverse sheaves

pH0i!L[dimZ] � IC(Z,L) ↪→ pH0i∗L[dimZ]

Apply the t-exact functor f † to this sequence and we get a sequence of perverse sheaves

f † pH0i!L[dimZ] � f † IC(Z,L) ↪→ f † pH0i∗L[dimZ]

By proper base change and smooth base change theorems [Bai18], the sequence can be
rewritten as

pH0ĩ!((f |f−1Z)∗L)[dim f−1Z] � f † IC(Z,L) ↪→ pH0ĩ∗((f |f−1Z)∗L)[dim f−1Z]

where ĩ : f−1Z ↪→ Y is the pullback of i. Now by definition of IC-sheaf, f † IC(Z,L) is
exactly the intermediate extension of (f |f−1Z)∗L, i.e.

f † IC(Z,L) = IC(f−1Z, (f |f−1Z)∗L)

and IC(f−1Z, (f |f−1Z)∗L) is simple if and only if (f |f−1Z)∗L is irreducible, and (f |f−1Z)∗L
is irreducible when L is irreducible (Theorem 3.5), i.e. when IC(Z,L) is simple.

Next, we are proceeding to prove that f † is fully faithful by showing that

F → pH0f†f
†F

is isomorphism. Notice that for every point x ∈ X, there is an étale morphism U → X such
that x is contained in the image and fU : Y ×X U → U has a section σU : U → Y ×X U . This
implies that the composition FU → pH0fU†f

†
UFU →

pH0fU†σU∗σ
∗
Uf
†
UFU

∼= FU is identity, so

pH0fU†f
†
UFU

∼= FU ⊕K
for some K ∈ Perv(U). To prove that F → pH0f†f

†F is isomorphism, it suffices to prove
the analogous statement for FU and fU on every étale morphism U → X. Replacing X by
U , we assume that f has a section.
Step 1. We prove the case when X is smooth and F = L[dimX] where L is a local system
on X.

By previous discussion and assumption, there is a decomposition pH0f†f
†F ∼= F ⊕ K.

Shrink X to an open subvariety V ⊂ X, we can assume that Hi(f |f−1V )†(f |f−1V )†F|V are
local systems, since they are already constructible and there are only finitely many nonzero
terms (Corollary 2.5). This implies that

pH0(f |f−1V )†(f |f−1V )†F|V = H0(f |f−1V )†(f |f−1V )†F|V = ◦f ∗f
∗L[dimX]
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By Theorem 3.5, H0(f |f−1V )∗(f |f−1V )∗L|V [dimX] ∼= L|V [dimX] hence we have

F|V ∼= pH0(f |f−1V )†(f |f−1V )†F|V

i.e. K|V = 0. As a result, Supp(f †K) 6= Y , so Hom(f †K, f †F) = 0 since f †F ∈ Loc(Y )[dimY ]
which is a Serre subcategory of Perv(Y ). This implies by adjunction that Hom(K, pH0f†f

†F)
is trivial, in particular, the canonical embedding K → pH0f†f

†F is trivial and we conclude
that F → pH0f†f

†F is isomorphism.
Step 2. We prove the case that X is arbitrary and F is a simple perverse sheaf, i.e.
F = IC(Z,L) where L is an irreducible local system on a smooth locally closed subvariety
i : Z ↪→ X.

Frist of all, we observe that since IC(Z,L) is supported on Z̄, pH0f†f
† IC(Z,L) is also

supported on Z̄.
Then, apply i! to IC(Z,L)→ pH0f†f

† IC(Z,L) and we get

L[dimZ]→ pH0(f |f−1Z)†(f |f−1Z)†L[dimZ]

which is an isomorphism by step 1, hence i!K = 0. As a result, K is supported on Z̄ − Z.
Finally, the embedding K ↪→ pH0f†f

† IC(Z,L) induced a nontrivial map

f †K → f † IC(Z,L) = IC(f−1Z, (f |f−1Z)∗L)

But f †K is supported on f−1Z̄ − f−1Z, which contradicts with the property of IC-sheaves.
Hence K = 0.
Step 3. We prove the general case by induction on length. For an arbitrary perverse sheaf
F, take a short exact sequence 0 → G → F → IC(W,E) → 0 and apply the adjunction to
this sequence:

0 G F IC(W,E) 0

0 pH0f†f
†G pH0f†f

†F pH0f†f
† IC(W,E)

By induction and step 2, the first and the third vertical maps are isomorphism, so by the
snake lemma the middle vertical map is also an isomorphism and we are done. �

Introduction to descent theory. Suppose that f : Y → X is a surjective morphism, then
we can ask a general question: Given a homomorphism between f ∗F and f ∗G, does it come
from a morphism φ : F → G? We have seen that this is always true if f is smooth with
connected fibers. For more general f , descent theory is developed to answer this question.
In descent theory, a commutative diagram of morphisms is considered:

Y ×X Y Y

Y X

pr2

pr1
f2 f

f

In this situation, we have following results:
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Theorem 3.9. Given two constructible sheaves F and G on a variety X, f : Y → X is a
surjective smooth morphism, then there is an exact sequence

0→ HomX(F,G)→ HomY (f ∗F, f ∗G)→ HomY×XY (f ∗2F, f
∗
2G)

where the third map is given by the difference of two maps pr∗1 and pr∗2 : HomY (f ∗F, f ∗G)→
HomY×XY (f ∗2F, f

∗
2G).

Theorem 3.10. Given two perverse sheaves F and G on a variety X, f : Y → X is a
surjective smooth morphism of relative dimension d, then there is an exact sequence

0→ HomX(F,G)→ HomY (f †F, f †G)→ HomY×XY (f †2F, f
†
2G)

where the third map is given by the difference of two maps pr∗1 and pr∗2 : HomY (f †F, f †G)→
HomY×XY (f †2F, f

†
2G).

Remark 3.11. Roughly speaking, Theorem 3.9 and 3.10 tells us that maps between con-
structible sheaves or between perverse sheaves can be glued along a smooth surjective mor-
phism Y → X, if and only if they agree on the product Y ×X Y . A classical situation is
when Y → X is a covering of open subvarieties, then a system of maps on individual open
subvarieties can be glued to a global one if and only if they agree on the overlap.

Sketch of proof to 3.9. Since f is smooth, Hom(f ∗F, f ∗G) ∼= Hom(f !F, f !G). By adjunction,
it suffices to prove that

H0f2!f
!
2F → H0f!f

!F → F → 0

is exact. By proper base change, it’s enough to prove it fiberwise, i.e.

H4d
c (Yx × Yx, Fx)→ H2d

c (Yx, Fx)→ Fx → 0

is exact. Observe that H2 dimY
c (Y,C) = C|connected components of Y|. Since connected components

of Yx × Yx one to one correspond to product of connected components of Yx, then we can
assume that Yx is disjoint union of finite points and the exactness follows easily. �

Sketch of proof to 3.10. It suffices to prove that

0→ G→ pH0f†f
†G→ pH0f2†f

†
2G

is exact. Since a sequence of perverse sheaves is exact if and only if it’s exact after being
pulled back to an étale cover, we can replace X by any étale cover. We choose an étale cover
U � X such that fU has a section σ : U → Y ×X U . From now on we assume that f has a
section.

The composition HomX(F,G)→ HomY (f †F, f †G)→ HomX(σ∗f †F, σ∗f †G) ∼= HomX(F,G)
is identity, so HomX(F,G)→ HomY (f †F, f †G) is injective. Suppose φ ∈ ker(pr∗1− pr∗2), then
we can obtain σ∗(φ) ∈ HomX(F,G). We are going to prove that φ = f ∗σ∗(φ), or equivalently,
if σ∗(φ) = 0, then φ = 0.

This is done by the following commutative diagram

HomX(F,G) HomY (f †F, f †G) HomX(F,G)

HomY (f †F, f †G) HomY×XY (f †2F, f
†
2G) HomY (f †F, f †G)

f∗

f∗

σ∗

pr∗2 f∗

pr∗1 σ∗1
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then σ∗1 pr∗2(φ) = f ∗σ∗(φ) = 0. Since pr∗1(φ) = pr∗2(φ) by assumption, we obtain σ∗1 pr∗1(φ) = 0,
but pr1 ◦σ1 = IdY hence φ = 0. �

Example 3.12. We don’t expect that statement in Theorem 3.10 will be true for the whole de-
rived category: Consider X = P1, take a nontrivial element α ∈ H2(P1,C) ∼= HomP1(C,C[2]).
Restricting to every open subvariety U & P1, there is no nontrivial homomorphism between
CU and CU [2], since U being affine implies that H2(U,C) = 0. Take Y to be disjoint
union of two copies of C and f : Y → X is the canonical covering, then HomX(C,C[2]) →
HomY (f †C, f †C[2]) is not injective.

Having seen the gluing of maps, we can ask the question about the gluing of constructible
sheaves or perverse sheaves.First of all we define what it means to be ”agree” on the product
Y ×X Y .

Definition 3.13. Suppose that f : Y → X is a smooth surjective morphism. Let F ∈
Shvc(Y ). A descent datum of F with respect to f is an isomorphism φ : pr∗2F

∼= pr∗1F ∈
Shvc(Y ×X Y ), such that the following cocycle condition is satisfied:

pr∗13φ = pr∗12φ ◦ pr∗23φ : pr∗3F → pr∗1F

A descent datum (F, φ) is called effective if there is a constructible sheaf G ∈ Shvc(X) such
that F = f ∗G and φ : pr∗2f

∗G ∼= pr∗1f
∗G is the natural isomorphism.

Definition 3.14. Same notation as above. Let F ∈ Perv(Y ). A descent datum of F with

respect to f is an isomorphism φ : pr†2F
∼= pr†1F ∈ Perv(Y ×X Y ), such that the following

cocycle condition is satisfied:

pr†13φ = pr†12φ ◦ pr†23φ : pr†3F → pr†1F

A descent datum (F, φ) is called effective if there is a perverse sheaf G ∈ Perv(X) such

that F = f †G and φ : pr†2f
†G ∼= pr†1f

†G is the natural isomorphism.

Following theorem answers the question about gluing of sheaves (proof omitted):

Theorem 3.15. Same notation as above, then every descent datum for constructible sheaves
or perverse sheaves is effective.
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