
SEMISMALL MORPHISMS
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1. Motivation

Let’s recall some results concerning t-exactness of pushforward from last time:

Proposition 1.1. Let f : X → Y be a morphism between varieties, then

(1) If f is quasi-finite, then f∗ is left t-exact and f! is right t-exact;
(2) If f is affine, then f∗ is right t-exact and f! is left t-exact;
(3) As a result, if f is quasi-finite affine, then f∗ and f! are t-exact.

Unfortunately, proper morphisms, which commonly show up in applications (e.g. reso-
lutions of singularities), are not in this list (except for finite morphisms). Heuristically,
this comes from the fact that for a proper variety Z of dimension d, the top degree co-
homology H2d(Z,C) 6= 0 (Lemma 2.3), so if there is a proper morphism f : X → Y
such that there is a subvariety W ⊂ Y with dimensions of fibers over W being ≥ d,
then the H2d−dimX(f |f−1W )∗C[dimX] 6= 0, i.e. (f |f−1W )∗C[dimX] ∈ pD≤0

c (Y ) only if
dimW ≥ 2d − dimX. So we restrict to proper morphisms with a nice property on the
dimension of fibers:

Definition 1.2. Let X be an irreducible variety, f : X → Y is called semismall if there
exists a stratification {Yt}t∈T of Y , such that for each stratum Yt and each point y ∈ Yt∩f(X)

2 dim f−1(y) + dimYt ≤ dimX

f is called small with respect to a dense open subset W ⊂ Y if ∀y ∈ W , f−1(y) is a finite
set, and there exists a stratification {Yt}t∈T , such that W is a union of strata and such that
∀y ∈ Yt ∩ f(X) ⊂ Y −W

2 dim f−1(y) + dimYt < dimX

Proposition 1.3 (Equivalent definition of semismallness). Let X be an irreducible variety.
Then f : X → Y is semismall if and only if

dimX ×Y X ≤ dimX

Proof. If f is semismall, then there is a stratification {Yt}t∈T , such that for each stratum Yt
and each point y ∈ Yt ∩ f(X)

dim(f × f)−1(y) + dimYt = 2 dim f−1(y) + dimYt ≤ dimX

which implies that dim(f × f)−1Yt ≤ dimX. Since X ×Y X = qt(f × f)−1Yt, we conclude
that dimX ×Y X ≤ dimX.

Let’s prove the ”if” part by constructing a stratification. Let’s prove a lemma first.
1
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Lemma 1.4. If f : X → Y is a morphism, then there exists a stratification {Yt}t∈T such
that ∀t ∈ T , the fibers of f |f−1Yt are either empty or of dimensions d(t) which only depend
on t, and

dim f−1Yt = d(t) + dimYt ; dim(f × f)−1Yt = 2d(t) + dimYt

Proof. We prove it by Noetherian induction. First of all, we replace Y with the closure of
f(X), endowed with reduced structure sheaf. Suppose that the lemma is true for any proper
closed subvariety of Y .

According to the generic flatness theorem [GD65] (EGA IV2, Théorème 6.9.1) there is
an irreducible open subvariety U ⊂ Y such that f |f−1U is flat. Shrink U if necessary,
we assume that each irreducible component of f−1U is mapped surjectively to U . Then
we apply Theorem 15.1 of [Mat89] to f |f−1U and we see that ∀y ∈ U and ∀x ∈ f−1(y),
dimOX,x ≤ dim f−1(y) + dimOY,y, and there is at least one x ∈ f−1(y) such that the
equality is obtained. In other words

sup
x∈f−1(y)

dimOX,x = dim f−1(y) + dimOY,y = dim f−1(y) + dimU

Since each irreducible components of f−1U is mapped surjectively to U , there exists x ∈
f−1(y) such that x lies in the component with maximal dimension, i.e. dim f−1U , so

sup
x∈f−1(y)

dimOX,x = dim f−1U

As a consequence, dim f−1(y) = dim f−1U − dimU is constant on U .
Apply Theorem 15.1 of [Mat89] to the flat morphism (f × f)|f−1U×Y f−1U , we see that

sup
x∈(f×f)−1(y)

dimOX×YX,x = dim f−1(y)× f−1(y) + dimOY,y = 2 dim f−1(y) + dimU

The RHS is constant on U , so

dim(f × f)−1U = sup
y∈U

sup
x∈(f×f)−1(y)

dimOX×YX,x = 2 dim f−1(y) + dimU

�

According to the lemma, there is a stratification {Yt}t∈T such that ∀t ∈ T , fibers of
f |f−1Yt are either empty or of dimensions d(t) which only depend on t and

dim(f × f)−1Yt = 2d(t) + dimYt

If dimX ×Y X ≤ dimX, then (f × f)−1Yt ≤ dimX ×Y X ≤ dimX, which implies that
2d(t) + dimYt ≤ dimX, so f is semismall. �

Exercise 1.5. For any f : X → Y , inequality dimX ×Y X ≥ dimX always hold.

Exercise 1.6. Consider morphisms f : X → Y and g : Y → Z, if g ◦ f is semismall, then f
is semismall.

Exercise 1.7 (Composition of semismall maps can fail to be semismall). Blowing up
subvariety {x = w = 0} inside the affine cone {xy = zw} ⊂ C4, followed by blowing up
the preimage of {0}, each blow up is semismall, but the composition is not. Show that the
composition is directly blowing up {0}.
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2. Semismall and small pushforward

Theorem 2.1. Assume that X is smooth, f : X → Y is a semismall morphism, then

(1) If F ∈ pD≤0
loc(X), then f!F ∈ pD≤0

c (Y );

(2) If F ∈ pD≥0
loc(X), then f∗F ∈ pD≥0

c (Y ).

Note that (2) follows from (1) by Verdier duality.

Proof. It suffices to prove that if F ∈ Loc(X)[dimX] then f!F ∈ pD≤0
c (Y ), i.e.

dim Supp(Hif!F ) ≤ −i
From the definition of semismallness, we know that there is a stratification {Yt}t∈T , such that
for each stratum it : Yt ↪→ Y and each point y ∈ Yt ∩ f(X), 2 dim f−1(y) + dimYt ≤ dimX,
or equivalently − dimX + 2 dim f−1(y) ≤ − dimYt. We see that F |f−1Yt is of cohomological
degree − dimX, hence the homological bound of f! [Bai18], i.e. Hif!K = 0 for i > 2d and
K ∈ Shvc(X), implies that

i∗tf!F ∼= (f |f−1Yt)!F |f−1Yt ∈ D≤−dimYt
c (Yt)

Since i∗tH
if!F = Hii∗tf!F , we have following inequality on strata

dim Supp(i∗tH
if!F ) ≤ −i

The LHS is dim(Supp(Hif!F ) ∩ Yt). Let t runs through T , then we have the desired
inequality

dim Supp(Hif!F ) ≤ −i
�

Corollary 2.2. Assume that X is smooth, f : X → Y is a proper morphism, TFAE:

(a) f is semismall;
(b) f∗ : Loc(X)[dimX]→ Perv(Y );
(c) f∗C[dimX] ∈ Perv(Y ).

Proof. By the previous theorem, (a) implies (b). (b) implies (c) tautologically. It remains
to prove that (c) implies (a). Assume that (a) is false.

By Lemma 1.4, there is a stratification {Yt}t∈T such that ∀t ∈ T , fibers of f |f−1Yt are
either empty or of dimensions d(t) which only depends on t and

dim(f × f)−1Yt = 2d(t) + dimYt

Since f is not semismall, there must be at least one stratum Yt such that 2d(t) + dimYt >
dimX, or equivalently − dimX + 2 dim f−1(y) > − dimYt. We need the following lemma

Lemma 2.3. If X is a proper variety of dimension d, then H2d(X,C) 6= 0.

Proof. By Verdier duality, the statement H2d(X,C) 6= 0 is equivalent to H−2d(X,ωX) 6= 0,
where ωX is the dualizing complex on X. Take a smooth open subvariety j : U ↪→ X with
complement i : Z ↪→ X such that dimZ < d, consider the distinguished triangle

i∗ωZ → ωX → j∗ωU →
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Apply the functor RΓ(X,−) and we get exact sequence

H−2d(Z, ωZ)→ H−2d(X,ωX)→ H−2d(U, ωU)→ H−2d+1(Z, ωZ)

Note that RΓ(Z, ωZ) = RΓc(Z,C)∨RΓ(Z,C)∨ because Z is proper, and since dimZ <
d, Hi(Z,C) = 0 for i > 2d − 2, hence H−2d+1(Z, ωZ) = H−2d(Z, ωZ) = 0. We see that
H−2d(X,ωX) ∼= H−2d(U, ωU). Since there is at least one connected component of U with
dimension d, denote it by U0, then ωU0 = C[2d], so H−2d(U0, ωU0) = H0(U0,C) = C 6= 0,
hence we conclude that H−2d(X,ωX) 6= 0. �

Apply the lemma and we get H− dimX+2 dim f−1(y)(f |f−1Yt)∗C 6= 0, so that i∗tf∗C[dimX] /∈
D≤−dimYt
c (Yt), hence f∗C[dimX] /∈ Perv(Y ), i.e. (c) is false. �

It turns out that we can say more for proper small morphisms.

Theorem 2.4. Assume that X is smooth. f : X → Y is a proper small morphism with
respect to dense open j : W ↪→ Y , L ∈ Loc(X), denote f |f−1W by f ′ (f ′ is finite since it’s
proper and quasi-finite) then

f∗L[dimX] ∼= j!∗(f
′
∗L[dimX])

Proof. Since small morphism is obviously semismall, we have f∗L[dimX] ∈ Perv(Y ) from
Cororllary 2.2. By a property of intermediate extension ([Ach18] Lemma 4.2.8), it suffices
to prove that

(1) i∗tf∗L[dimX] ∈ D≤−dimYt−1
c (Yt) for every stratum Yt ⊂ Y −W ;

(2) i!tf∗L[dimX] ∈ D≥−dimYt+1
c (Yt) for every stratum Yt ⊂ Y −W .

Notice that (2) follows from (1) by the Verdier duality, so it suffices to prove (1). This follows
from replacing ≤ by < in dimension inequalities of the proof of Theorem 2.1, details left as
an exercise. �

3. Generalization

In many situations, we don’t have a semismall or small morphisms, instead, morphisms
are semismall or small when they are restricted to subvarieties of the source. They are
called stratified semismall or stratified small morphisms, and they share similar properties
to semismall or small morphisms. We are going to give precise definitions and explain their
properties.

Definition 3.1. Let X be a variety equiped with a good stratification {Xs}s∈S , f : X → Y
is called stratified semismall if ∀s ∈ S , f |Xs is semismall.
f is called stratified small with respect to a dense open subset W ⊂ Y if ∀s ∈ S , f |Xs

is stratified small with respect to W .

Exercise 3.2. f is stratified semismall if and only if there exists a stratification {Yt}t∈T , such
that for any s ∈ S and t ∈ T and each point y ∈ Yt ∩ f(Xs)

2 dim(f−1(y) ∩Xs) + dimYt ≤ dimXs
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Similarly, f is stratified small with respect to a dense open subset W ⊂ Y if and only if
∀y ∈ W , f−1(y) is a finite set, and there exists a stratification {Yt}t∈T , such that W is a
union of strata and such that ∀s and ∀y ∈ Yt ∩ f(X) ⊂ Y −W

2 dim(f−1(y) ∩Xs) + dimYt < dimXs

Hint. Sufficiency is obvious, necessity can be proven in the following way: Suppose that we
have a family of stratification {Ts}s∈S of Y such that for any s ∈ S and r ∈ Ts and each
point y ∈ Yr ∩ f(Xs)

2 dim(f−1(y) ∩Xs) + dimYr ≤ dimXs

then find a common refinement of {Ts}s∈S , denote it by T , we claim that this is a strat-
ification of Y which satisfies the condition in the definition of stratified semismall. In fact,
∀t ∈ T and ∀y ∈ Yt∩f(Xs), there exists a r ∈ Ts such that Yt ⊂ Yr, since T is a refinement
of Ts, in particular dimYt ≤ dimYr, hence

2 dim(f−1(y) ∩Xs) + dimYr ≤ dimXs

The argument is similar for stratified small morphism. �

Theorem 3.3. Assume that X has a good stratification {Xs}s∈S , f : X → Y is a stratified
semismall morphism, then

(1) If F ∈ pD≤0
S (X), then f!F ∈ pD≤0

c (Y );

(2) If F ∈ pD≥0
S (X), then f∗F ∈ pD≥0

c (Y ).

Moreover, if f is also proper then f∗ : DS (X)→ Dc(Y ) is t-exact.

Proof. (2) follows from (1) by the Verdier duality. The the case when f is also proper
follows from combining (1) with (2). Let’s prove (1) by proving that ∀s ∈ S , and for
any L ∈ Loc(Xs), we have f! IC(Xs,L) ∈ pD≤0

c (Y ). We proceed by Noetherian induction:

Suppose that for any G ∈ pD≤0
S (X) supported on X̄s−Xs, we have f!G ∈ pD≤0

c (Y ), we want

to prove that f! IC(Xs,L) ∈ pD≤0
c (Y ).

Notice that there is a short exact sequence of perverse sheaves

0→ K → is!L[dimXs]→ IC(Xs,L)→ 0

such that SuppK ⊂ X̄s −Xs, so there is a distinguished triangle

f!K → f!is!L[dimXs]→ f! IC(Xs,L)→

Since we have f!K ∈ pD≤0
c (Y ), it suffices to prove that f!is!L[dimXs] = (f |Xs)! ∈ pD≤0

c (Y ).
This follows from Theorem 2.1 because f |Xs is semismall. �

Corollary 3.4. Assume that X has a good stratification {Xs}s∈S , f : X → Y is a proper
morphism, TFAE:

(a) f is stratified semismall;
(b) f∗ : PervS (X)→ Perv(Y );
(c) ∀s ∈ S , f∗ IC(Xs,C) ∈ Perv(Y );
(d) ∀s ∈ S , f∗CX̄s [dimXs] ∈ pD≤0

c (Y ).
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Proof. By the previous theorem, (a) implies (b). (b) implies (c) tautologically. (b) also
implies (d) since f∗ is t-exact and CX̄s [dimXs] ∈ pD≤0

S (X).
(d) implies (a): By Lemma 1.4, there is a stratification {Yt}t∈T such that ∀t ∈ T , fibers

of f |f−1Yt∩Xs are either empty or of dimensions d(s, t) which only depends on s and t and

dim(f × f)−1Yt ∩ (Xs ×Y Xs) = 2d(s, t) + dimYt

Assume that there is a stratum jσ : Xσ ↪→ X, such that f |Xσ is not semismall, then
there must be at least one stratum Yt such that 2d(σ, t) + dimYt > dimXσ, or equiva-
lently − dimXσ + 2 dim f−1(y) ∩ Xσ > − dimYt. Note that d0 := dim SuppCf−1(y)∩X̄σ ≥
d(σ, t). Apply the Lemma 2.3, and we get H− dimX+2d0(f |f−1Yt)∗Cf−1Yt∩X̄σ 6= 0, so that

i∗tf∗CX̄σ [dimXσ] /∈ D≤− dimYt
c (Yt), hence f∗CX̄σ [dimXσ] /∈ pD≤0

c (Y ), a contradiction.
(c) implies (d): We proceed by Noetherian induction on startification S . By induction

hypothesis, there is an open stratum jσ : Xσ ↪→ X of dimension dimX with complement Z
in X̄σ, i : Z ↪→ X̄σ, such that ∀s ∈ S − {σ}, f∗CX̄s [dimXs] ∈ pD≤0

c (Y ), we want to show

that f∗CX̄σ [dimX] ∈ pD≤0
c (Y ). First of all, there is a distinguished triangle

jσ! CXσ [dimX]→ CX̄σ [dimX]→ i∗CZ [dimX]→

Since we have proven that (d) implies (a), so (f |X−Xσ)∗ sends pD≤0
S−{σ}(X−Xσ) to pD≤0

c (Y ).

We see that CZ [dimX] ∈ pD≤0
S−{σ}(X − Xσ) so f∗i∗CZ [dimX] ∈ pD≤0

c (Y ). As a result, it

suffices to prove that f∗jσ! CXσ [dimX] ∈ pD≤0
c (Y ). Note that there is another distinguished

triangle

K → jσ! CXσ [dimX]→ jσ!∗CXσ [dimX]→
such that K ∈ pD≤0

S (X) and supported on Z, hence f∗K ∈ pD≤0
c (Y ). The third term is

IC(Xs,C) by definition, so f∗jσ!∗CXσ [dimX] ∈ pD≤0
c (Y ) by assumption, hence

f∗jσ! CXσ [dimX] ∈ pD≤0
c (Y )

�

Similar to Theorem 2.4, we have following

Theorem 3.5. Assume that X has a good stratification {Xs}s∈S , f : X → Y is a proper
stratified small morphism with respect to dense open j : W ↪→ Y , denote f |f−1W by f ′,
then ∀F ∈ PervS (X)

f∗F ∼= j!∗(f
′
∗F |f−1W )

Proof. Exercise. �

4. More examples

Kaledin’s Theorem. Recall that a smooth variety X is called symplectic if dimX is even
and there exists a 2-form Ω ∈ Γ(X,Ω2

X) such that ΩdimX/2 is nonzero everywhere, i.e. Ω is
nondegenerate. We mention the following theorem ([Kal06] Lemma 2.11) without proof:

Theorem 4.1. A projective birational morphism from a smooth symplectic variety is semis-
mall.
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This theorem tells us that there is a large class of semismall morphisms. We pick one of
them: Springer resolution. Consider a reductive group G over C and the nilpotent cone
N of its Lie algebra g. Choose a Borel subgroup of G, then there is a projective birational

morphism f : Ñ := T ∗(G/B)→ N constructed from

T ∗(G/B) = G×
B
u→ g

where u is the Lie algebra of unipotent radical U of B. As a cotangent bundle of a smooth
variety, T ∗(G/B) is automatically symplectic: the symplectic form Ω = dα where α is the
tautological one form coming from regarding the identity map T ∗(G/B) → T ∗(G/B) as a
section of π∗Ω1

G/B for π : T ∗(G/B)→ G/B the natural projection. By Kaledin’s Theorem ,
f is semismall.

In fact, there is another way of proving that f is semismall, using following result ([Hum11]
6.7)

Theorem 4.2 (Dimension Formula). If G is a reductive algebraic group of rank r over an
algebraically closed field, u is a nilpotent element in the Lie algebra g, then

dimZG(u) = r + 2 dim f−1(u)

From this formula, we see that nilpotent orbit G · u has dimension

dimG− dimZG(u) = dimG− r − 2 dim f−1(u) = dim Ñ − 2 dim f−1(u)

i.e. dimG · u + 2 dim f−1(u) = dim Ñ, since thers are only finitely many nilpotent orbits
([Hum11] 3.9 for groups over complex numbers or fields with good charateristics, [Lus76] for
general case) so f is semismall.

Grothendieck’s alteration. Grothendieck proposed the following strengthening of Springer
resolution:

f : g̃ := G×
B
b→ g

sending a pair (g, x) ∈ G × g to Adg(x) ∈ g. It can be shown that f is surjective and
projective. Moreover, f can be embedded into a commutative diagram

g̃ t

g t/W

p

f q

π

Note that t/W ∼= g/G. It has following properties:
(1) Restrict to the regular locus greg, the commutative diagram is Cartesian:

G×
B
breg t

greg t/W

p



8 YEHAO ZHOU

(2) Taking fibers over {0} of projections g̃→ t and g→ t/W, we recover Springer’s resolution

Ñ = G×
B
u→ N

(3) Restrict to the regular semisimple locus G×
B
brs → grs is a W-torsor.

Proposition 4.3. Grothendieck’s alteration f : g̃→ g is small with respect to grs.

Sketch of proof. We learn from the property (3) that f is finite on f−1grs. Consider a strat-
ification of t by by {tα}α⊂Φ, where Φ is the set of positive roots, and tα is the hyperplane
{α = 0} removing the union of sub-hyperplanes {β = 0} for β running through all subsets
of Φ such that contain α properly. Note that the open stratum t∅ is the regular locus of t. tα
has a property that for t ∈ tα, ZG(t) is connected reductive of rank r and does not depend
on t, denote it by ZG(tα).

Notice that every elements of g has a unique Jordan decomposition x = xs + xn where
xs ∈ greg and xn ∈ N, and [xs, xn] = 0. We can conjugate xs to an element t ∈ t, so xs is send
to an element in the nilpotent cone of ZG(t), hence x is in the G-orbit of some subvariety
tα × Sα, where Sα is a ZG(tα)-orbit in the nilpotent cone of ZG(tα).

On the one hand, it is not hard to see that f−1(x) is a finite disjoint union of Springer
fibers associated to the nilpotent orbit Sα of reductive group ZG(tα), hence we can apply the
dimension formula:

2 dim f−1(x) + r = dimZZG(tα)(Sα)

On the other hand, G · (tα × Sα) is of dimension

dim tα + dimG− dimZG(x) = dim tα + dimG− dimZZG(tα)(Sα)

hence we have

dimG · (tα × Sα) + 2 dim f−1(x) = dim tα + dimG− r

since tα is a proper subvariety of t if and only if α 6= ∅, so

dimG · (tα × Sα) + 2 dim f−1(x) < dimG = dim g̃

if and only if α 6= ∅. Hence we conclude that f : g̃→ g is small with respect to G·t∅ = grs. �

Hilbert-Chow maps of smooth surfaces. Recall that for a quasi-projective variety X, we
have the Hilbert scheme HilbX parametrizing closed subvarieties which are proper. There
is a connected component of HilbX denoted by HilbnX , parametrizing closed subvariety of
length n, i.e. those Z ↪→ X consisting of finite many points with dimOZ(Z) = n. Note that
HilbnX is also quasi-projective.

There is a projective and surjective morphism called Hilbert-Chow, sending HilbnX,red (i.e.

with reduced structure sheaf) to the nth symmetric power of X, denoted by X(n), which
sends an element Z ∈ HilbnX,red to the finite collection of points

{lengthOX,x
(OZ,x) · [x]}x∈SuppOZ

since
∑

x∈SuppOZ
lengthOX,x

(OZ,x) = n by definition, the image does live in X(n).
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Also recall that for a smooth quasi-projective surface S, HilbnS is smooth of dimension 2n.
All of the basic facts about Hilbert schemes and Hilbert-Chow maps mentioned above can
be found in [Fan05] Part 2 and Part 3.

Theorem 4.4. Suppose that S is a smooth quasi-projective surface over a field k, then the
Hilbert-Chow map

f : HilbnS → S(n)

is semismall.

Sketch of proof. First of all, we notice that there is a natural stratification on S(n) given by

S(n) =
∐

λ∈Part(n)

S
(n)
λ

where λ runs through partitions of n, and S
(n)
λ is the locally closed subvariety of S(n)

parametrizing l points with multiplicity {λ1, λ2, · · · , λl} such that
∑l

i=1 λi = n. Note that

S
(n)
λ is a diagonal embedding of S(l) into S(n), in particular dimS

(n)
λ = 2l. It’s easy to see

that fiber of f over a point {x1, x2, · · · , xl} is a product

l∏
i=1

Hilbλi(kJx, yK)

where Hilbm(kJx, yK) is the scheme parametrizing quotients of kJx, yK of length m. More
precisely, it’s an fppf sheaf sending a k-algebra R to the set of quotients R[x, y]/I which
are locally free R-modules of rank m and supported on the zero section of SpecR[x, y]. We
claim that

dim Hilbm(kJx, yK) ≤ m− 1

It follows from the claim that

dimS
(n)
λ + 2

l∑
i=1

dim Hilbλi(kJx, yK) ≤ 2l + 2 ·
l∑

i=1

(λi − 1) = 2n

and we finished the proof. It remains to prove the claim, we put it into a lemma below. �

Lemma 4.5. Suppose that Hilbm(kJx, yK) is the scheme parametrizing quotiens of kJx, yK of
length m, then

dim Hilbm(kJx, yK) ≤ m− 1

Sketch of proof. Define the following moduli space M of triples

(R ∈ Alg/k) 7→ {(X, Y, v)|(X, Y ) ∈ Nslm(R)×Nslm(R), v ∈ Rm, [X, Y ] = 0, R[X, Y ]v = Rm}

i.e. X and Y are two commuting nilpotent slm(R)-matrices, v ∈ Rm and R[X, Y ]v generates
Rm. It’s an exercise to show that M is representable. We also define a morphism π : M →
Hilbm(kJx, yK) by sending a triple (X, Y, v) to the module of kJx, yK generated by v. π is
obviously invariant under the GLm action, we claim that this is a GLm-torsor:



10 YEHAO ZHOU

(1) π is a surjective morphism between fppf sheaves because for any quotient R[x, y]/I
which is locally free R-module of rank m and supported on the zero section of
SpecR[x, y], we can localize R to make R[x, y]/I a free module, and associate a
triple by sending 1 to v, and x, y to matrices representing them on some basis.

(2) For a k-algebra R, suppose that there are two R-points of M represented by triples
(X, Y, v) and (X ′, Y ′, v′), such that π(X, Y, v) ∼= π(X ′, Y ′, v′) as R-algebra. Since they
algebra they generate are isomprphisc, if

∑
i,j aijX

iY jv = 0 then
∑

i,j aijX
′iY ′jv′ = 0.

It follows that we can define a map from Rm to Rm:

φ :
∑
i,j

aijX
iY jv 7→

∑
i,j

aijX
′iY ′jv′

This is a surjective morphism between free modules hence an ismorphism, i.e. repre-
sented by a GLm(R)-matrix. We conclude that (X, Y, v) and (X ′, Y ′, v′) are related
by a GLm(R) transform.

(3) GLm(R)-action on M(R) is free, bacause if g ∈ GLm(R) fixes X, Y and v, then it
fixes every X iY jv, but those elements generates Rm, hence g fixes Rm, i.e. g = Id.

So we see that π is a GLm-torsor hence dim Hilbm(kJx, yK) = dimM−m2.
Next, we observe that M is a subvariety of the following moduli space

M0 := {(X, Y, v)|(X, Y ) ∈ Nslm ×Nslm , v ∈ km, [X, Y ] = 0}

so dimM ≤ dimM0. Now M0 = M1 × Am where

M1 := {(X, Y ) ∈ Nslm ×Nslm|[X, Y ] = 0}

hence dimM0 = dimM1 +m. M1 is a subvariety of

M2 := {(X, Y ) ∈ Nslm × slm|[X, Y ] = 0}

so we have dimM1 ≤ dimM2. It remains to estimate the dimension of M2.
Consider the projection p : M2 → Nslm , on every nilpotent orbit SLm ·X, fibers of p are

conjugates of Zslm(X), so

dim p−1(SLm ·X) ≤ dim SLm ·X + dimZslm(X) = dim SLm ·X + dimZSLm(X)

The last equation comes from the smoothness of ZSLm(X), which is clear when char k = 0
(Cartier’s Theorem [Car62]), and is also true in general by an easy computation (leave as an
exercise). As a result, dimM2 ≤ dim SLm = m2 − 1

To sum up, we have

dim Hilbm(kJx, yK) = dimM−m2 ≤ dimM0 −m2

= dimM1 +m−m2

≤ dimM2 +m−m2

≤ m2 − 1 +m−m2 = m− 1

�
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[Hum11] James E Humphreys. Conjugacy classes in semisimple algebraic groups. Number 43. American

Mathematical Soc., 2011.
[Kal06] Dmitry Kaledin. Symplectic singularities from the poisson point of view. Journal für die reine und

angewandte Mathematik (Crelles Journal), 2006(600):135–156, 2006.
[Lus76] George Lusztig. On the finiteness of the number of unipotent classes. Inventiones mathematicae,

34(3):201–213, 1976.
[Mat89] Hideyuki Matsumura. Commutative ring theory, volume 8. Cambridge university press, 1989.


