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1 The category of sheaves

Example 1.0.1 (Prototypes). A smooth function on an open subset of a smooth manifold restricts to a smooth
function on any open subset, and a smooth function can be glued together (uniquely) from smooth functions
on smaller subsets. These features mean that C∞(M) is naturally a sheaf. Similarly, holomorphic functions
on C or a complex manifold, or more generally sections of a vector bundle are all naturally sheaves.

1.1 Presheaves

Let X be a topological space. It will be harmless to assume it Hausdorff and locally compact throughout,
although we will point out when these hypotheses are actually necessary. Then we have a category Op(X) of
open sets of X, where the morphisms are inclusions, so that Hom(U, V ) = pt. if U ⊂ V and is empty otherwise..
A presheaf is (for us) a functor F : Op(X)opp → VectC, the category of C-vector spaces. Therefore for every
U ∈ Op(X), we obtain a complex vector space F(U). If V ⊂ U , then we call the morphism F(U)→ F(V )
of C-vector spaces restriction. An element s ∈ F(U) is called a section of F over U . Its image under the
restriction map F(U)→ F(V ) is usually written s �V or resUV (s).

A morphism of presheaves is a natural transformation of functors. That is, a morphism φ : F → G is a
morphism φ(U) : F(U)→ G(U) of C-vector spaces for every U ∈ Op(X) such that all the squares

F(U) G(U) U

F(V ) G(V ) V

φ(U)

φ(V )

commute.
Given a point x ∈ X, the neighbourhoods U 3 x form a filtered subcategory of Op(X). This means simply

that if U and V are neighbourhoods of x, so is U ∩ V . The stalk of F at x is then the (cofilitered) colimit

Fx := colim
U3x

F(U).

Its elements are called germs. If U 3 x, then by definition there is a canonical map F(U) → Fx written
s 7→ sx. Concretely,

Fx = {(s, V ) |V 3 x, s ∈ F(V )} / ∼

where (s, V ) ∼ (t, U) if there is W ⊂ U ∩ V such that W 3 x and s �W= t �W . Each stalk is naturally a
C-vector space for formal reasons, but we can also see this from the concrete realization. Thus under the
heuristic that sheaves should be the functions on a space, the germ of a section records the behaviour of s
near x.

It will be helpful to know when we can calculate stalks using only certain open sets.

Definition 1.1.1. A subset B of a partially ordered set A is cofinal if for every a ∈ A,there is b ∈ B with
a ≤ b.
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We will apply this with ≤ meaning reverse inclusion. For formal reasons, colimits taken over cofinal
subsets are isomorphic.

A morphism φ : F → G of presheaves induces a map φx : Fx → Gx for each x ∈ X. Concretely, it is given
by

φp(sp) = (φ(V )(s))p

where (s, V ) is a representative of sp.
The support of a presheaf F on X is the closed subset

suppF := {x ∈ X | Fx 6= 0}.

The support of a section s ∈ F(U) is the closed set

supp(s) = {x ∈ U | sx 6= 0} .

Under the heuristic that sections are functions, this notion corresponds to the support of a function. However,
in the case of sections we do not need to take the closure: If sx = 0 then there is a small neighbourhood of x
inside U where s is zero. Hence its germ at any other point in the small neighbourhood is zero.

We will write Presh(X) for the category of presheaves of C- vector spaces on X.

1.2 Sheaves

A sheaf is a presheaf satisfying two axioms which serve to make the sections of a sheaf more “function-like”
than the sections of an arbitrary presheaf.

Definition 1.2.1. A sheaf is a presheaf satisfying the following axioms:

1. (Identity). If U =
⋃
α Uα, s ∈ F(U) and s �Uα= 0 for all α, then s = 0.

2. (Gluing). If U =
⋃
α Uα and we are given sα ∈ F(Uα) such that

sα �Uα∩Uβ= sβ �Uα∩Uβ

for all α, β, then there is s ∈ F(U) such that s �Uα= sα. If we require this s to be unique (Strong
Glueing), axiom 2 subsumes the identity axiom.

Another way to package identity and gluing is to say that a presheaf F is a sheaf if the sequence

0 F(U)
∏
α F(Uα)

∏
α,β F(Uα ∩ Uβ)

s (s �Uα)α

(sα)α (s �Uα∩Uβ (sα)− s �Uα∩Uβ (sβ))α,β

r0 r1

is exact. Here U =
⋃
α Uα. This sequence is of particular use when the Uα is disjoint.

We have r1 ◦ r0 = 0 for any presheaf. Exactness at F(U) is the identity axiom. Exactness at
∏
α F(Uα)

is the gluing axiom.
A morphism of sheaves is by definition a morphism of presheaves. We denote the category of sheaves on

X by Sh(X).
A presheaf satisfying the identity axiom is called separated or decent.

Lemma 1.2.2. Let F be a presheaf on X. The following are equivalent.

1. F is separated;

2. For all U ∈ Op(X) and s ∈ F(U), sx = 0 for all x ∈ U implies s = 0;

3. For all U ∈ Op(X) and s, t ∈ F(U), sx = tx all x ∈ U implies s = t.
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1.3 Sheafification

We will need sheaf versions of the basic objects of homological algebra, but the naive definitions of the
image and cokernel, in particular, fail in general to be sheaves if we attempt to define them by e.g.
coker(φ)(U) = coker(φ(U)). We will see this has to do with subtleties in the definition of a surjection of
sheaves.

Therefore we need a way to produce sheaves from presheaves. An alternative reference for this section is
Vakil’s notes.

Definition 1.3.1. An element
(sp)p∈U ∈

∏
p∈U
Fp

is a compatible set of germs if for each p ∈ U , there is an open set Up ⊂ U such that Up 3 p and a section s′p
such that (s′p)q = sq for all q ∈ Up. We define

F+(U) = {(sp)p∈U | (sp)p∈U is compatible} ⊂
∏
p∈U
Fp.

The compatibility condition forces the strong gluing axiom.

Lemma 1.3.2. The set of compatible sets of germs is precisely the image of the map

s 7→ (sp)p∈U .

Theorem 1.3.3. Let F be a presheaf. Then F+ as defined above is a sheaf with a morphism ι : F → F+

with the following universal property: given a morphism φ : F → G with G a sheaf, there is a unique morphism
φ+ such that

F F+

G

ι

φ
φ+

commutes. Moreover, ι induces an isomorphism Fp
∼→ F+

p for all p ∈ X.

Definition 1.3.4. We call the sheaf F+ the sheafification of F .

Sketch of proof of theorem. The sheafification is unique because it solves a universal mapping problem.
The restriction maps are

(sp)p∈U (sp)p∈V

V U.

Identity axiom: If (sp)p ∈ F+(U) restricts to zero on a open cover {Uα} of U , then sp = 0 for all p, so
(sp)p = 0.

Gluing axiom: If for each α we have (sα,p)p∈Uα , then agreeing on overlaps means sα,p = sβ,p for all
p ∈ Uα ∩ Uβ , so define (sp)p∈U by sp = sα,p if p ∈ Uα. We must show this is compatible. Given p0 ∈ U , take
α such that p0 ∈ Uα. By compatibility (sα, p) there is Up0 ⊂ Uα and s′p0 ∈ F(Up0) representing sp0 . Then if
q ∈ Up0 ,

(s′p0)q = sα,q = sq.

Thus (sp)p∈U is compatible. To show that the sets of compatible germs form a C-vector space we must show
they are an abelian group with scalar multiplication. This is straightforward. If U =

⋃
α Uα and is such that

(sp) �Uα= (sp)p∈Uα = 0 for all α, then for all p ∈ U , sp = 0, so that (sp)p∈U = 0. Therefore F+ satisfies the
identity axiom. The gluing axiom is an exercise.

The morphism ι is given by ι(U)(s) = (sp)p∈U .
If (sp)p∈U is compatible, so is (φp(sp))p∈U , so this set of germs comes from some t ∈ G(U). Define

φ+((sp)p∈U ) = t.
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1.4 Examples of sheaves

Example 1.4.1. There is an isomorphism of categories Sh(pt) ' VectC.

Example 1.4.2 (Constant sheaves). Let M be a vector space. Then

MX(U) = {s : U →M | s constant on connected components}

with restriction given by restriction of functions gives the constant sheaf with value M . It is the sheafification
of presheaf of constant M -valued functions.

If X is connected, for all x ∈ X, we have MX(X) ' (MX)x.

Lemma 1.4.3. Let X be a topological space and M a C-vector space. Then

1. For any connected open U ⊂ X, MX(U) 'M canonically.

2. V ⊂ U both connected open, then restriction is identified with identity M →M .

Proof. A locally constant function on a connected set is constant. Then 2 follows from 1.

Example 1.4.4 (Skyscraper sheaves). Given X and a vector space M , we can define the skyscraper sheaf by

Mx(U) =

{
M if x ∈ U
0 otherwise

.

Restrictions are either the identity or zero. In particular, Mx(U) = (Mx)x. We have suppMx = {x}, and
any sheaf supported at a single point is a skyscraper sheaf.

Remark 1.4.5. If we want Mx to be supported only at x, we should ask that X be at least T1, i.e. that for
any points x 6= y in X, there is a neighbourhood of x that does not contain y.

1.5 Morphisms of sheaves

Definition 1.5.1. • A morphism of sheaves φ : F → G is injective if φ(U) is injective for all U ;

• A morphism of sheaves is surjective if φx is surjective for all x;

• A morphism of sheaves is an isomorphism if it has an inverse morphism of sheaves, equivalently φ(U) is
an isomorphism for all U .

This example shows a morphism of sheaves of abelian groups with a surjective, but not surjective on
sections:

Example 1. Let O be the sheaf of holomorphic functions on C, and O× be the sheaf of nonzero holomorphic
functions on C. Consider the exponential map exp: O → O×. Recalling that every nonzero holomorphic
function on a simply connected domain has a logarithm and that C is locally simply connected, we see
that exp is surjective on stalks. However, exp(C×) : O(C×)→ O(C×) is not surjective; if z = ef(z) then on
C \ [0,∞) we would have f(z) = log(z), and log(z) doesn’t extend to C×.

Lemma 1.5.2. The following are equivalent:

1. φ is an isomorphism of sheaves;

2. φx is an isomorphism of C-vector spaces for each x;

3. φ is injective and surjective.

Definition 1.5.3 (with exercises). Let φ : F → G be a morphism of sheaves.
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1. The presheaf
U 7→ kerφ(U)

is a sheaf. Call it kerφ. It stalks are (kerφ)p = ker(φp).

2. The sheafification of the presheaf
U 7→ coker(φ(U))

is called cokerφ, and (cokerφ)p = coker(φp).

The fact about the stalks descends from the fact that colimits in vector spaces are exact, so commute
with taking kernels and cokernels.

Proposition 1.5.4. A sequence of sheaves

0 F G H 0

(by definition, this means we have equalities of sheaves im = ker at each place) iff

0 Fx Gx Hx 0

is exact for all x.

Remark 1.5.5. Note that exactness says that imφ = kerψ for some morphisms of sheaves, so in this case the
image presheaf is already a sheaf.

A useful description of surjectivity:

Lemma 1.5.6. A morphism of sheaves φ : F → G is surjective iff for all open U ⊂ X, and s ∈ G(U), there
is an open cover {Uα} and sections tα ∈ F(Uα) such that s �Uα is in the image of φ(Uα).

Thus surjectivity for sheaves means “local surjectivity,” and the issue is we can have sections whose images
glue, but which do not themselves glue.

Lemma 1.5.7. A sequence 0→ F → G → H is exact iff it gives an exact sequence of vector spaces for all
open U ⊂ X.

Definition 1.5.8. An abelian category is an additive category in which

1. Every morphism has a kernel and cokernel;

2. Every monomorphism is the kernel of its cokernel;

3. Every epimorphism is the cokernel of its kernel.

We won’t give the full categorical definitions of kernels and cokernels, but given a morphism f : A→ B, we
will use the word “kernel” to also mean the morphism ker f → A, and “cokernel” to also mean the morphism
B → coker f .

Theorem 1.5.9. Sh(X) is abelian.

Proof. Only have to check requirements 2 and 3. Hint to do so: Given a monomorphism φ : F → G, we want
to show that F is isomorphic to the kernel of the map G → cokerφ. Reduce this to the fact that φx are all
monomorphisms and use that VectC is abelian.

2 Pullback and pushforward

The table on p. 90 is excellent.
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2.1 Pullbacks

Let f : X → Y . Then we have a functor f∗pre : Presh(Y )→ Presh(X) given by

(f∗preF)(U) = colim
V ∈Op(Y )
V⊃f(U)

F(V ).

Sheafification gives a functor f∗ : Sh(Y )→ Sh(X) sending F 7→ (f∗preF)+.

Example 2.1.1. Pullback from a point is the same as the constant sheaf functor.

Definition 2.1.2. If f : X ↪→ Y is an inclusion, then f∗preF sheafifies to the restriction of F to X, written
F �X .

Stalks of the pullback are easy to calculate, which will give nice exactness properties to the pullback.

Lemma 2.1.3. Let f : X → Y . Then we have a natural isomorphism (f∗F)x ' Ff(x).

Proof. Note we can use the presheaf versions. For each open U 3 x we get a family of opens V ⊂ Y
such that V ⊃ f(U) 3 f(x), and so we get maps colimV⊃f(U) F(V ) → Ff(x). We have morphisms
colimV⊃f(U2) F(V ) → colimV⊃f(U1) F(V ) when U1 ⊂ U2, and by the univeral property of colimits, all the
triangles

colimV⊃f(U2) F(V ) colimV⊃f(U1) F(V )

M

.

commute for any vector space M . Thus colimU3x colimV ∈Op(Y )
V⊃f(U)

F(V ) satisfies the universal property of Fx

so they are isomorphic.

Lemma 2.1.4. The pullback functor is exact.

Proof. 0 f∗F f∗G f∗H 0

is exact iff

0 f∗Fx f∗Gx f∗Hx 0

is exact, but this is

0 Ff(x) Gf(x) Hf(x) 0,

which is exact.

Proposition 2.1.5. The pullback f is functorial in the sense that: (g ◦f)∗F = g∗(f∗F) if g ◦f : X → Y → Z
and F ∈ Sh(Z).

Proof. Exercise. As presheaves, the two colimits are over cofinal sets, and so are identified. We have to
show the isomorphism holds for the sheafifications. Get a diagram

f∗pre(g
∗
preF) (g ◦ f)∗(F)

f∗pre(g
∗
preF) f∗(g∗F)

using functoriality of f∗pre and universal property of sheafification. Taking stalks, horizontal arrows become
isomorphisms, and left arrow is isomorphism (g∗preF)f(x) → (g∗F)f(x).
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2.2 Pushforward

Given f : X → Y , we have f∗ : Sh(X) → Sh(Y ) sending a sheaf F to the sheaf (no sheafification needed)
U 7→ F(f−1(U)).

The book writes ◦f∗ for this functor, and f∗ for its (right) derived functor. No point doing this yet.

Proposition 2.2.1. f∗ is left exact.

Proof. By definition 1.5.1, left exactness can be checked on sections.

Proposition 2.2.2. Let f : X → Y be continuous with F ∈ Sh(Y ) and G ∈ Sh(X). We have an adjunction

HomSh(X)(f
∗F ,G)

∼→ HomSh(Y )(F , f∗G).

Example 2.2.3. Pushing forward to a point is the same as taking global sections: let f : X → pt be constant.
Then f∗ : Sh(X) → Sh(pt) ' VectC, and f∗ ' Γ(X,−); f−1(pt) = X. If M ∈ Sh(pt) = VectC and
F ∈ Sh(X), the adjunction says

HomSh(X)(M,F) ' HomC(M,Γ(F)).

Example 2.2.4. If ιx : {x} ↪→ X is inclusion of a point, and M ∈ Sh({x}) = VectC, then ιx,∗M is a skyscraper
Mx on X supported at x. To see that ιx,∗M is not supported outside of x, one can use the fact that the set
of open neighbourhoods of any y 6= x not containing x is cofinal with the set of all open neighbourhoods of y.

The adjunction now gives
HomC(Fx,M) ' HomSh(X)(F ,Mx)

for x ∈ X and F ∈ Sh(X).

Proposition 2.2.5. Let f : X → Y be continuous. Then we have a morphism

(f∗F)y → Γ(F �f−1(y)).

Proof. We have (f∗F)y = colimU3y F(U), so f−1(U) is an open set containing f−1(y). Thus there is a
morphism into colimV⊃f−1(y) F(V ), and this maps by sheafification to the right-hand-side.

Example 2.2.6. This map need not be an isomorphism: Let Λ ⊂ C be a lattice and let f : C→ C/Λ to be
the natural map. Let F be the sheaf of holomorphic functions on C. Then (f∗F)y =

⊕
λ∈Λ Fy+λ, whereas

Γ(F �Λ) should be
∏
λ∈Λ Fλ.

3 Local systems and monodromy

3.1 Local systems

Definition 3.1.1. A local system or locally constant sheaf is a sheaf F such that there is an open cover
{Uα} of X with F �Uα a constant sheaf.

Theorem 3.1.2. The category Loc(X) of local systems is a full abelian subcategory of Sh(X), when X is
locally connected.

Idea of proof. It suffices to show that Loc(X) is closed under (co)kernels and extensions. We will show the
kernel of a morphism of local systems is a local system. Let f : F → G be a morphism and V be open
connected such that F �V and G �V are constant. Then for any open connected U , we have

0 (ker f)(V ) F(V ) G(V )

0 (ker f)(U) F(U) G(U)
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with exact rows, where the vertical maps are restrictions. The rightmost two restrictions are isomorphisms,
so the restriction (kerF) is an isomorphism. It follows that (ker f) �V is constant.

Closure under cokernels and extensions: exercise.

Lemma 3.1.3. Let X be connected and locally connected. The constant sheaf functor M 7→ MX is fully
faithful. The global sections functor F 7→ Γ(F) is a left inverse to the constant sheaf functor.

Proof. X is connected, so lemma 1.4.3 says that the global sections of MX are naturally identified with M .
Recall that Γ is right adjoint to the constant sheaf functor. Therefore

HomSh(X)(MX , NX) ' HomC(M,Γ(NX)) ' HomC(M,N).

So the constant sheaf functor is fully faithful, and Γ is left inverse to it (look just at rightmost isomorphism
and apply the Yoneda lemma).

Any point x ∈ X has a neighbourhood basis of connected sets, so we can compute stalks using just these
sets. Because restrictions between these sets are identity maps, M ' Γ(MX)→ (MX)x.

3.2 Pushforward of local systems

Note that inclusion of a point is proper, but skyscraper sheaves are certainly not locally constant, so we
cannot expect to push forward a local system and obtain a local system using just any map, even with proper
pushforward.

Definition 3.2.1. A map f is a covering map if it is surjective and every point in Y has a neighbourhood U
such that f−1(U) is a disjoint union of open subsets Vα with f �Vα a homeomorphism (onto U).

Proposition 3.2.2. If f : X → Y is a covering map and Y is locally path- connected and locally simply
connected, and F ∈ Loc(X), then f∗F ∈ Loc(Y ). Moreover, f∗ is exact between these categories.

Proof. Let y ∈ Y . We can always pick a simply connected neighbourhood U 3 y whose preimage is a
disjoint union

∐
α Vα of copies of U . By the equivalence of categories between representations of π1 and local

systems, any local system on U or Vα is constant. By exactness of the sequence defining the sheaf condition,
F(f−1(U)) '

∏
α F(Vα).

Let F ∈ Loc(X). Let Mα := F(Vα) so that F �Vα'MαVα
. For any connected open U ′ ⊂ U ,

f∗(F)(U ′) = F ′(f−1(U ′)) '
∏
α

F(Vα ∩ f−1(U ′)) '
∏
α

Mα.

By a recognition criterion developed in the book, f∗F is locally constant.
We already know f∗ is left exact, so it is enough to prove it preserves surjective morphisms. Let q : F � G.

It is enough to show f∗q is surjective on sections, for a small enough open set in Y . Let U be as in the
beginning of the proof, and the Vα as above. Since F �Vα and G �Vα are locally constant and the constant
sheaf functor is fully faithful, q(Vα) is surjective. Then we have

(f∗q)(U) =
∏
α

q(Vα),

which is surjective.

Remark 3.2.3. The same proof yields the same conclusion for f!, expect with
⊕

instead of
∏

.

Example 2 (Exercise 2.2.1 in the book). Let Q be the sheaf on X = C× with sections

Q(U) =

{
f : U → C

∣∣∣∣ 2z dgdz = g

}
.
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We claim that Q is locally constant, but not constant. On any open connected simply-connected set U ⊂ X,
we may define a branch of the square root function, by g(z) = e

1
2 log(z) for a branch log of the complex

logarithm. Note g 6= 0 on U . We claim any section of Q(U) is proportional to g. Indeed,

d

dz
(
h

g
) = g−1 dh

dz
− g−2h

dg

dz
= g−1 dh

dz
− 1

z
2z
dh

dz

g

2z
= (g−1 − 1

z
g)
dh

dz
,

and g−1 = 1
z g is zero. This gives isomorphisms

Q(U) ' {αg |α ∈ C} ' C ' CX(U).

and the existence of g on U gives a natural isomorphism Q �U' CX �C× .
The sheaf Q is not constant. One way to show this is that it does not have nontrivial global sections. If g

is a solution to the differential equation and γ is a loop around the origin, then∫
γ

g

g′
dz =

∫
γ

1

2z
dz = πi,

but this is the winding number of the path g ◦ γ, so should be in 2πiZ.

Example 3 (Exercise 2.2.2 from the book). Let f : C× → C× be the two-sheeted cover f : z 7→ z2. Then we
claim that f∗CX ' CX ⊕Q. We will construct a map out of the direct product from its universal property.
Define

CX(U)→ f∗CX)(U)

by
g 7→ g(f(z)).

The image function is constant on connected components because continuous images of connected sets are
connected. Next define

Q(U)→ f∗CX(U)

by

g 7→ g(f(z))

z
.

These images have zero derivative, hence are locally constant, because g solves the differential equation.
The induced map ϕw on stalks is an isomorphism. It is enough to show it is injective; (f∗CX)w ' Cz1⊕Cz2

where z2
1 = z2 = w. Say that ϕz(g1, g2) = 0. This means there is V 3 w and small balls f−1(V ) ⊃ Vzi 3 zi

such that
g1(z2)

z
= −g2(z2).

On each Vi. On each Vi, g2(z2) is constant, and z2
1 = z2

2 , so g2(z2) is constant on V1 t V2. But z1 = −z2, and
now

−g2(w) =
g1(w)

z1
= −g1(w)

z2
= g2(w).

Then g2 = 0 in V whence g1 = 0 in V .

3.3 Local systems and representations of π1

The main result is:

Theorem 3.3.1. Let X be path-connected, and locally simply connected, x0 ∈ X. Then there is an equivalence
of abelian categories

Monx0
: Loc(X)

∼→ Rep(π1(X,x0)).

given by monodromy functor sending a local system to its monodromy representation at x0.
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Representations of π1 will come from composing isomorphisms along paths. We have to know some things
about covering paths.

Lemma 3.3.2. If F is a local system on a path-connected space X, then Fx ' Fy for all x, y ∈ X.

Proof. Chain finitely-many isomorphisms together by covering a path with connected subsets.

Proof of theorem. The vector space will be Fx0
. Let ∗ denote usual concatenation of paths. Given a path γ,

let sets Uα cover a it from γ(0) to γ(1) such that F �Uα is constant. The γ−1(Uα) cover [0, 1].

Lemma 3.3.3. Let {Vα}α cover [0, 1]. There is a sequence of real numbers ai such that 0 = a0 < a1 < · · · <
an = 1 and [ai, ai+1] contained in only one Vα.

Therefore we get indicies α1, . . . , αn and points a1, . . . , an ∈ [0, 1] such that γ[ai, ai+1] ⊂ Uαi+1
. Now,

F �γ[ai,ai+1] is a constant sheaf for each i (lemma on pullbacks of constant sheaves). We get isomorphisms:

Γ(F �γ([an−1,an])) Γ(F �γ([an−2,an−1])) · · · Γ(F �γ([a0,a1]))

Fγ(an) Fγ(an−1
Fγ(an−2) · · · Fγ(a1) Fγ(a0)

We want to set ρ(γ) equal to the composition, so we must show this isomorphism does not depend on
the points ai chosen. Possible to show by induction that adding a finite number of points gives the same
isomorphism, so (take unions) any numbers {ai} give the same isomorphism.

Pasting the diagrams shows ρ(γ1 ∗ γ2) = ρ(γ1) ◦ ρ(γ2).
Finally have to show ρ descends to quotient by homotopy. The key ingredient in checking this is a version

of lemma 3.3.3 for rectangles.
Functoriality in F : exercise.
Now define Monx0(F) to be the representation with vector space Fx0 and action as above.
We will now sketch the inverse functor. Fix a choice of path αx from x0 to x, for each x ∈ X, and chose

αx0
to be the constant path. Given a representation M , set

Q(M)(U) :=
{
s : U →M

∣∣∣ s(γ(0)) = (αγ(0) ∗ γ ∗ α−1
γ(1)) · s(γ(1)) ∀γ : [0, 1]→ U

}
.

This is a sheaf. The open sets on which Q(M) restricts to a constant sheaf are the ones coming from the
locally simply connected hypothesis.

Here is another way of seeing what kind of sheaf Q(M) really is. Given M , consider M X̃ . This is a trivial
local system, but it’s pushforward to X need not be. The local system Q(M) should be what is obtained by
pushing M X̃ forward along the covering map, then taking π1(X,x0)- invariants. Pullback sends local systems
to local systems, in the nicest possible way.

Proposition 3.3.4. M ∈ VectC, f : X → Y . Then f∗MY ' MX . Further, if F is a local system, so is
f∗F .

Proof. Let p : Y → pt be constant, and then by a previous example, MY = p∗M for a sheaf (vector space)
on pt. By functoriality,

f∗MY ' (f∗(p∗M)) ' (p ◦ f)∗(M) 'MX .

Recall that a map f : (X,x0)→ (Y, y0) of pointed spaces gives a homomorphism

π1(f) : π1(X,x0)→ π1(Y, y0),

yielding a restriction functor

Res
π1(Y,y0)
π1(X,x0)) : Rep(π1(Y, y0))→ Rep(π1(X,x0).

10



Lemma 3.3.5. Given f : (X,x0)→ (Y, y0) and F ∈ Loc(Y ), we have

Monx0
(f∗F) = Res

π1(Y,y0)
π1(X,x0)Mony0(F).

Idea of proof. Recall that (f∗F)x0 ' Fy0 , so the vector spaces on both sides are identified. Therefore to
prove the lemma one just needs to show that ρ(γ) and ρ(f ◦ γ) can be identified, where γ is a loop based at
x0.

Example 4. We have a two-sheeted cover C× → C× given by z 7→ z2. Pushing forward the trivial representation
CC× gives a two-dimensional representation of π1(C×) = Z, which decomposes into the trivial representation
and sign representation.

4 Proper pushforward

A map f : X → Y is called proper if inverse images of compacts are compact. If X and Y are locally compact
(Hausdorff with neighbourhood bases of precompact sets, i.e. whose closures are compact) then properness is
equivalent to f being closed (images of closed sets are closed) and all fibres being compact. Spaces in this
section, and usually when discussing pushforwards in general, are all locally compact.

The proper pushforward is f! : Sh(X)→ Sh(Y ).

f!(F)(U) =
{
s ∈ F(f−1(U))

∣∣ f �supp s : supp s→ U is proper
}
.

If f is proper then f! = f∗.
The presheaf f!F is actually a sheaf. We need only check the gluing axiom. Let U =

⋃
α Uα ⊂ Y so that

f−1(U) =
⋃
α f
−1(Uα) ⊂ X with sα ∈ f!F(Uα) all agreeing on overlaps. The sα glue to a section s ∈ f∗F(U);

we must show f �supp s is proper. Let K ⊂ U be compact, so that

K ⊂
⋃

finite

Uβ .

Then

f−1(K) ∩ supp(s) = f−1(K) ∩

(⋃
α

supp sα

)
=
⋃

finite

(f−1(K) ∩ supp sβ),

which is a finite union of compact sets (f is proper on each supp sβ), hence is compact. This proves the claim.

Proposition 4.0.1. f! is left-exact.

Proof. Diagram chase using exactness of the bottom row of

0 f!F(U) f!G(U) f!H(U)

0 f∗F(U) f∗G(U) f∗H(U)

.

Let Γc be the functor giving global sections with compact support. Then we have isomorphisms f! '
Γc : Sh(X)→ VectC, where f : X → pt is constant.

Proper pushforward also has good description of the stalks, under the condition X and Y be locally
compact.

Proposition 4.0.2. Let f : X → Y be a morphism of locally compact spaces, then if y ∈ Y , F ∈ Sh(X),
have natural isomorphism

(f!F)y
∼→ Γc(F �f−1(y)).
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Proof. We have
f!(F)y = colim

V⊂Y
V 3y

{
s ∈ F(f−1(V ))

∣∣ f �supp s is proper
}

and

Γc(F �pre,f−1(y)) =

s ∈ colim
U⊂X

X⊃f−1(y)

F(U)

∣∣∣∣∣∣ supp s ∩ f−1(y) is compact

 ,

where F �pre,f−1(y) is a presheaf which sheafifies to the restriction.
Let s ∈ f!(F)y be represented by s′ ∈ F(f−1(V )) with f �supp s′ proper. Thus (f �supp s′)

−1(y) =
supp s ∩ f−1(y) is compact. Thus s′ ∈ Γc(F �pre,f−1(y)). Thus we get a map

f!(F)y → Γc(F �pre,f−1(y))
sh→ Γc(F �f−1(y)),

where sh is the (global component of the) sheafification morphism.
One can show this is a bijection. Injectivity is easy: If s 7→ s′ = 0, then there is an open set U such

that f−1(y) ⊂ U ⊂ f−1(V ) with s′ �U= 0. Thus y 6∈ supp s′. As f is in particular closed when restricted to
supp s′, we have V ′ := V \ f(supp s′) is an open neighbourhood of y. By construction, s′ �f−1(V ′)= 0, so s is
the zero germ at y.

Surjectivity: exercise; see the proof of lemma 2.3.6 in the book for full details.

Proposition 4.0.3. Proper pushforward is functorial in the sense that: (g ◦ f)!F ' g!(f!F) if g ◦ f : X →
Y → Z and F ∈ Sh(X).

Proof. s ∈ f!F(U) ⊂ F(f−1(U)) has a support suppX(s) ⊂ f−1(U) as a section of F , and a (distinct)
support suppY (s) ⊂ U as a section of f!F . We have suppX(s) =

{
x ∈ f−1(U)

∣∣ sx 6= 0 in F(f−1(U)
}

and
suppY (s) = {y ∈ U | sy 6= 0 in (f!F)y}. We have f(suppX s) = suppY s. We have to show the containment

g!(f!(F))(U) =
{
s ∈ F(g−1(f−1(U))

∣∣ f �suppX s and g �suppY s proper
}

⊂ (g ◦ f)!(F)(U) =
{
s ∈ F(g−1(f−1(U))

∣∣ (g ◦ f) �suppX s proper
}
.

is an equality. To see this containment, check directly that the composite is proper when f and g are. To
prove the opposite containment: point set topology shows that

(g ◦ f) �suppX s proper =⇒ f �suppX s proper,

so we can view s as a section of f!F(U), and suppY s is defined. Then more point set topology shows that
g �suppY s is proper, finishing the proof.

4.1 Proper base change

Theorem 4.1.1. Given a Cartesian square (pullback diagram) of locally compact spaces

X ′ X

Y ′ Y

f ′

g′

f

g

there is an isomorphism of functors g∗ ◦ f! ' f ′! ◦ (g′)∗ : Sh(X)→ Sh(Y ′).

The horizontal maps are base change morphisms. The steps of the proof are:

1. Produce a natural map g∗f∗F → f ′∗(g
′)∗F ;

2. Show our map restricts to a map g∗f!F → f ′! (g
′)∗F ;
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3. Show this restricted map is an isomorphism on stalks.

Steps 1 and 2 are the content of

Lemma 4.1.2. Given a Cartesian square, there is a commutative square

g∗f!F f ′! (g
′)∗F

g∗f∗F f ′∗(g
′)∗F

with the vertical maps being the natural inclusions induced by f! ↪→ f∗ and likewise for f ′.

Proof of lemma. Given V ′ ⊂ Y ′, set

V = f−1(g(V ′)) = g′((f ′)−1(V ′)).

Then we have a cartesian square of topological spaces

(f ′)−1(V ′) V

V ′ g(V ′)

g′

f ′ f

g

We will construct a commutative diagram

(g∗pref!F)(V ′) (f!(g
′)∗preF)(V ′)

(g∗pref∗F)(V ′) (f ′∗(g
′)∗F)(V ′)

g∗pre(f!↪→f∗) inclusion

The bottom map exists because the directed system for g∗pref∗F is a subset of the directed system for f ′∗(g
′)∗pre:

by the square (4.1)
(g∗pref∗)F = colim

U⊂X
U=f−1(U ′)
U ′⊃g(V ′)

F(U).

and
f ′∗(g

′)∗preF = colim
U⊂X
U⊃V

F(U)

We must show the bottom map restricts appropriately to complete our square. Given s ∈ F(U) such that
f �supp s is proper, we must show that f ′ �(g′)−1(supp s)∩(f ′)−1(V ′) is proper. This follows from the description
of pullbacks in Top, and the fact that the outer square in

(g′)(supp s) ∩ (f ′)−1(V ′) ⊂ X ′ supp s ∩ V ⊂ X supp s ⊂ X

V ′ ⊂ Y ′ g(V ′) ⊂ Y ′ U ⊂ Y

is a pullback (pasting of pullbacks).
The natural transformation f! → f∗ applied to sheafification (g′)∗preF → (g′)∗F gives two squares, and

sheafification again gives
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g∗f!F

(g∗pref!F) (f!(g
′)∗F) f ′! (g

′)∗F

g∗f∗F

(g∗pref∗F) (f ′∗(g
′)∗F) f ′∗(g

′)∗F

g∗pre(f!↪→f∗) inclusion

The dashed square is the one we wanted.

Proof of theorem. We get (g∗f!)F → (f ′! (g
′)∗)F from the lemma, and it suffices to show it is an isomorphism

on stalks. We have

(f!F)g(y) ' (g∗f!F)y
lemma−→ (f ′! (g

′)∗F)y
description of stalks,∼−−−−−−−−−−−−−−→ Γc

(
[(g′)∗F ] �(f ′)−1(y)

)
' Γc(F �)f−1(y))

The description of stalks gives an isomorphism (f!F)g(y)
∼→ Γc(F �f−1(y))), which is actually this composite.

Thus the lemma map is an isomorphism.

5 Open and closed embeddings

Lemma 5.0.1. Let h : Y ↪→ X be an inclusion of a locally closed subspace. Then if F ∈ Sh(Y ), h!F is
naturally isomorphic to the sheafification of the presheaf h!,pre(F) defined by

U 7→

{
F(U ∩ Y ) if U ∩ Ȳ ⊂ Y
0 otherwise

.

h! is exact, with stalks

h!(F)x =

{
Fx if x ∈ Y
0 otherwise.

Proof. By the Hausdorff assumption,

supp(s) ↪→ U is proper ⇐⇒ supp(s) is closed in U

so
h!(F)(U) = {s ∈ F(U ∩ Y ) | supp(s) ⊂ U is closed}

If U ∩ Ȳ ⊂ Y , then U ∩ Ȳ = U ∩Y is closed in U , so supports are closed in U as well. Therefore if U ∩ Ȳ ⊂ Y ,
then h!(F)(U) = F(U ∩ Y ). This shows that there is a morphism of presheaves h!,pre(F) → h!(F), hence
h+

!,pre(F)→ h!(F). Can show that stalks of both are as in the statement, so this is an isomorphism. (Exercise.)
Description of stalks implies exactness.

h! preserves stalks over Y and has zero stalks outside, so it is called the extension by zero functor.

5.1 Restriction with supports

Definition 5.1.1. Let h : Y ↪→ X be an inclusion of a locally closed subspace. Restriction with supports is
the functor h! : Sh(X)→ Sh(Y ) defined by

h!(F)(U) = colim
V ∈Op(X)
V ∩Ȳ=U

{s ∈ F(V ) | supp(s) ⊂ U} .
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Exercise: this is a sheaf. Hint: For all V ⊂ X open such that V ∩ Ȳ = U , we actually have

{s ∈ F(V ) | supp(s) ⊂ U} ∼→ h!(F)(U).

to show this, let V ′ ⊂ V with V ′ ∩ Ȳ = U , and do a diagram chase with

0 {s ∈ F(V ) | supp(s) ⊂ U} F(V ) F(V \ U)

0 {s ∈ F(V ′) | supp(s) ⊂ U} F(V ′) F(V ′ \ U)

q res

res

res

res

to show q is an isomorphism.
The set of open subsets V ⊂ X such that V ∩ Ȳ = U is cofinal with the set of all V ⊂ X such that V ⊃ U

(Given V ⊃ U , take V ′ such that U = V ′ ∩ Ȳ . Then V1 := V ∩ V ′ ⊂ V and V1 ∩ Ȳ = U .) Therefore we have
a have natural injective map h!(F) ↪→ h∗(F).

If h is an open inclusion, then h! = h∗: If U ′ ⊂ U ↪→ X is open in an open, then there is a unique minimal
V , namely V = U ′. So the support condition is automatic.

Proposition 5.1.2. Let h : Y ↪→ X be inclusion of locally closed subspace. We have an adjunctionf

HomSh(X)(h!F ,G) ' HomSh(Y )(F , h!G).

Proof. Enough to construct a natural isomorphism of hom sets with h!,pre(F) in place of h!F . Let U ⊂ Y be
open, and let V ⊂ X be open such that V ∩ Ȳ = U . As Y is locally closed, all open subsets of Y arise this
way. Note that U is closed in V . Given f : h!,preF → G, consider

h!,preF(V ) G(V )

h!,preF(V \ U) = 0 G(V \ U).

fV

fV \U

The over-down composition is then also zero, and so fV must land in h!(G)(U), yielding a map

F(U) = h!,preF(V )→ {s ∈ G(V ) | supp(s) ⊂ U} ' h!(G)(U). (1)

Define φ : Hom(h!,preF ,G)→ Hom(F , h!G) by defining φ(f)U as in (1).
If φ(f) is zero, then fV is zero for all V ⊂ X with V ∩ Ȳ ⊂ Y . But for any open subset of X not of this

form, h!,preF is itself zero. So φ is injective.
Sketch of surjectivity: Given g : F → h!G, define f as the composite

h!,preF(V ) = F(V ∩ Y )→ h!G(V ∩ Y ) ' {s ∈ G(V ) | supp(s) ⊂ V ∩ U} ↪→ G(V )

can check this is a morphism of sheaves and gives a section of φ.

Corollary 5.1.3. h! is left exact.

Proof. h! has a left adjoint.

Corollary 5.1.4. (h ◦ j)!F ' j!h!F , if h : Y ↪→ X and j : W ↪→ Y are locally closed inclusions.

Proof. Functoriality of proper pushforward, plus uniqueness of adjoint functors.

Proposition 5.1.5. Let h : Y → X be a locally closed inclusion. For any F ∈ Sh(Y ), the natural maps

h!h∗F
ι→ h∗h∗F → F and F → h!h!F

ι′→ h∗h!F ,

where ι and ι′ are induced by the the natural transformation h! ↪→ h∗ and the other maps are adjunction
morphisms, are all isomorphisms.
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Proof. By definition we have

h∗preh∗(F)(U) = colim
V⊂X
V⊃U

h∗(F)(V ) = colim
V⊂X
V⊃U

F(V ∩ Y )
φ→ F(U),

where the map φ is induced by the restrictions F(V ∩ Y )→ F(U). For V small enough, we have V ∩ Y = U ,
so φ is an isomorphism. Thus h∗h∗F → F is an isomorphism.

From the description of stalks of h!F from lemma 5.0.1, we know if s ∈ h!F(U), then supp(s) ⊂ U ∩Y . We
will leave showing ι is an isomorphism as an exercise. From the definition of h!, we see that h!h!F → h∗h!F
is an isomorphism. Again using lemma 5.0.1, we see that

F → h!h!F → h∗h!F

is isomorphism, so the first map is an isomorphism, too.
ι is an isomorphism: exercise. Hint: Can factor any h into open and closed inclusions.
h!h∗F ' h∗h∗F : If h is a closed inclusion, h∗ ' h!, and if h is an open inclusion, h∗ ' h!. We can factor

any h as h = j ◦ i : Y ↪→ Ȳ ↪→ X, and we are done modulo showing ι′ is an isomorphism:

(j ◦ i)!(j ◦ i)∗F ' i!j!(j∗i∗F)

' i∗j!j!i∗F
' i∗j∗j!i∗F
' (j ◦ i)∗j∗i∗F
' h∗h∗F .

Theorem 5.1.6. Let i : Z → X be a closed inclusion, and j : U → X be the open inclusion of the complement.
Then

i∗ ◦ j! = 0, i! ◦ j∗ = 0, j∗ ◦ i∗ = 0.

Proof. Exercise. The functors are both Sh(U)→ Sh(X)→ Sh(Z). At z ∈ Z,

(i∗j!F)z = (j!F)i(z) ' Γc(F �j−1(i(z))) = 0

as j−1(i(z)) = ∅.
If W ⊂ Z is open,

(i!j∗F)(W ) = colim
V⊂X

V ∩Z=W

{s ∈ F(V ∩ U) | supp(s) ⊂W} ,

but (V ∩ U) ∩W = ∅ so the colimit is zero.

6 Tensor product and internal hom

Sheaf versions of usual constructions in VectC. Both will send local systems to local systems in the nicest
possible way.

6.1 Tensor product

Sheafification of the presheaf
U 7→ F(U)⊗C G(U)

gives the tensor product of sheaves F ⊗ G.

Lemma 6.1.1. If f : X → Y and F ,G ∈ Sh(Y ), then f∗(F ⊗ G) ' f∗F ⊗ f∗G. In particular (F ⊗ G)y '
Fy ⊗ Gy.
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Proof. Stalks: Tensor product of vector spaces commutes with colimits in VectC because it has a right
adjoint HomC(−,−). This proves the claim about stalks for presheaves, and sheafification preserves stalks.

For general pullbacks, we again swap ⊗ and colimits to see that f∗preF ⊗pre f∗preG ' f∗pre(F ⊗pre G).
Sheafification(s) now give a map which must be an isomorphism as it will be an isomorphism on stalks.
Details: exercise. For general pullbacks, sheafification gives maps

f∗preF ⊗pre f∗preG → f∗F ⊗pre f∗G → f∗F ⊗ f∗G.

Both are isomorphisms on stalks, which are (f∗F)x ⊗ (f∗G)x. We have (f∗preF ⊗ f∗preG)(U) ' (f∗pre(F ⊗pre
G))(U), again because ⊗ commutes with colimits in VectC. Now we have

f∗preF ⊗pre f∗preG f∗F ⊗ f∗G

f∗pre(F ⊗pre G) f∗pre(F ⊗ G) f∗(F ⊗ G)

∼ φ

Every other arrow is an isomorphism on stalks, so φ must be. Here φ is induced by sheafification of the top
left presheaf, the top map is from above step.

Lemma 6.1.2. −⊗− : Sh(X)× Sh(X)→ Sh(X) is exact in both variables.

Proof. Calculate on stalks, and use that tensor product of vector spaces is exact.

Lemma 6.1.3. X connected and locally connected. M,N ∈ VectC, then

MX ⊗NX 'M ⊗NX .

If F and G are local systems, for all x0 ∈ X,

Monx0(F)⊗Monx0(G) ' Monx0(F ⊗ G).

Proof. The identity gives a map MX(U)⊗NX(U)→M ⊗NX(U), so we get a map MX⊗preNX 'M ⊗NX
which is an isomorphism on stalks.

If γ is a loop based at x0, then by construction of ρ(γ),

Fx0 ⊗ Gx0 (F ⊗ G)x0

Fx0
⊗ Gx0

(F ⊗ G)x0

∼

ρF (γ)⊗ρG(γ) ρF⊗G(γ)

∼

commutes.

6.2 Internal hom

The sheaf hom is given by
Hom(F ,G)(U) = HomSh(U)(F �U ,G �U ).

Note that Γ(Hom(F ,G)) = HomSh(X)(F ,F).
The sheaf hom is a sheaf, even if F is only a presheaf.

Example 6.2.1. 1. Let X = C and let F = Cx be a skyscraper sheaf supported at x ∈ C. Let G = CX .
Then Hom(Cx,CX) = 0. Indeed, if U ⊂ X is open then consider φ in Hom(F ,G)(U). There is V ⊂ U
such that V 63 x and restriction maps G(U) ↪→ G(V ) (connected components of open sets in C are open;
assemble V by finding an open subset avoiding x for each connected component.) Then we have
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F(U) G(U)

F(V ) = 0 G(V ),

φU

φV

so φ = 0.

2. We have Hom(CX ,C
x) = HomC(C,C)x. Indeed, if U 63 x, then Hom(CX ,C

x)(U) = 0. Otherwise

Hom(CX ,C
x)(U) = HomSh(U)(CU ,C

x �U ) ' HomC(C,C)

by adjunction.

The sheaf hom does not commute with taking stalks: We just saw Hom(F ,G)x = 0, but of course
HomC(Fx,C) is not zero.

Internal hom is left exact in both variables.
For the covariant variable, the definition of injectivity shows preservation of injective maps, and the rest

of injectivity is a short gluing argument. For the contravariant variable, have to be mindful of what a short
exact sequence in the opposite category means e.g. epimorphisms and monomorphisms are exchanged.

Sheaf tensor and sheaf hom are an adjoint pair, left and right, respectively.

Proposition 6.2.2. We have an adjunction

HomSh(X)(F ⊗ G,H) ' HomSh(X)(F ,Hom(G,H)).

Lemma 6.2.3. Let X be path-connected and locally simply-connected. Then

HomC(M,N)
X
' Hom(MX , NX).

In particular Hom(−,−) takes local systems to local systems. Also

Monx0
(Hom(F ,G)) ' HomSh(X)(Monx0

(F),Monx0
(G)).

Proof.

Hom(MX , NX)(U) = HomSh(X)(MX �U , NX �U ) ' HomSh(U)(MU , NU ) ' HomC(M,N).

The last isomorphism is because the constant sheaf functor is fully faithful. Thanks to monodromy functor
and adjunction, we have

Homπ1(X,x0)(M,Monx0(Hom(F ,G))) ' HomSh(X)(Mon−1
x0

(M)⊗F ,G)

' Homπ1(X,x0)(M ⊗Monx0(F),Monx0(G))

' Homπ1(X,x0)(M,HomC(Monx0(F),Monx0(G))).

This holds for any M , so apply Yoneda to see the claim.
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