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Abstract

An approach to linear programming duality is proposed which relies on

quadratic penalization, so that the relation between solutions to the pe-

nalized primal and dual problems becomes affine. This yields a new proof

of Levin’s duality theorem for capacity-constrained optimal transport as an

infinite-dimensional application.

1 Introduction

Given a distribution of sources (manufacturers) f(x) and sinks (consumers)

g(y), and a function c(x, y) that measures the cost of transporting a unit of

mass from x ∈ Rm to y ∈ Rn, the optimal transport problem of Monge [10]

and Kantorovich [2] seeks to minimize the total cost required to transport f

to g. We consider a variant of that classical problem by imposing a limitation

on the amount of mass that is allowed to be transferred from x to y: The

capacity constrained optimal transport problem.

For two given probability distributions f ∈ L1(Rm) and g ∈ L1(Rn), and

a fixed nonnegative function h ∈ L∞(Rm × Rn), we denote by Γh(f, g) the

set of all nonnegative measurable joint densities that are bounded by h, i.e.,

f(x) =
∫
h(x, y) dy, g(y) =

∫
h(x, y) dx, and 0 ≤ h ≤ h. Necessary and
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sufficient conditions for Γh(f, g) to be nonempty are given by Kellerer [4, 3]

and Levin [8], namely Γh(f, g) 6= ∅ if and only if

f(A) + g(B)− h̄(A×B) ≤ 1 for any Borel measurable A ⊂ Rm, B ⊂ Rn.

Throughout this article, we will always assume that these conditions are sat-

isfied. Finally, let c ∈ L1
loc(R

m ×Rn) and

Ic(h) :=

∫∫
c(x, y)h(x, y) dxdy.

The optimal transportation problem with capacity constraints consists in find-

ing and studying optimal transference plans h0 ∈ Γh(f, g) for the total cost

functional Ic:

Ic(h0) = min
h∈Γh(f,g)

Ic(h).

Optimal transference plans always exist as can be easily established via the

direct method of calculus of variations. Regarding the capacity constrained

optimal transport as an infinite-dimensional linear programming problem, it

is not surprising that some of the minimizers are extreme points of the convex

polytope Γh(f, g). Such extreme points can be characterized by h0 = hχW for

some Lebesgue measurable set W in Rm ×Rn [6]. Under suitable conditions

on the cost function c, minimizers are unique [5].

In this short manuscript, we address the linear programming duality for

capacity constrained optimal transport. Although such a duality was already

established by Levin∗ (see Theorem 4.6.14 of [11]), we present an alterna-

tive proof here. While Rockafellar-Fenchel dualities (including Levin’s, and

the Kantorovich’s duality for classical optimal transport, cf. [12, Ch. 1]) are

usually proved using an asbtract minimax argument with the Hahn–Banach

theorem at its core, our new proof is rather elementary and is based on a

quadratic approximation of the linear program, cf. Section 2. Combining the

techniques presented in the following with some of the results derived by the

authors in a companion paper [7], we also provide a new elementary proof of

Kantorovich’s duality.

We prove Levin’s duality under the additional assumption that the capac-

ity bound h is compactly supported, and we write W = spt(h). Notice that

under this hypothesis, h, f , and g are bounded and compactly supported, so

that in particular f, g, h ∈ Lp for any 1 ≤ p ≤ ∞.

Before stating Levin’s duality theorem, we introduce some notation. Given

a function ζ = ζ(x, y) defined on Rm ×Rn, we write 〈ζ〉x and 〈ζ〉y for the x-

and y-marginals of ζ, i.e., 〈ζ〉x :=
∫
ζ(x, y) dy and 〈ζ〉y :=

∫
ζ(x, y) dx. The in-

tegral over the product space is denoted by 〈〈ζ〉〉, i.e., 〈〈ζ〉〉 :=
∫∫

ζ(x, y) dxdy.

Likewise, if ζ = ζ(x) or ζ = ζ(y), we simply write 〈ζ〉 to denote the integral

∗In a private communication, Rachev and Rüschendorf attribute Theorem 4.6.14 of [11] to a
handwritten manuscript of Levin; we are unsure where or whether it was subsequently published.

2



over Rm or Rn, respectively. With the above notation, the total cost func-

tional becomes

Ic(h) := 〈〈ch〉〉.

We introduce some further notation. Let

J(u, v, w) := −〈uf〉 − 〈vg〉+ 〈〈wh〉〉,

and

Liphc =
{

(u, v, w) ∈ L1(f dx)× L1(g dy)× L1(h̄ dxdy) :

u(x) + v(y)− w(x, y) + c(x, y) ≥ 0 and w(x, y) ≤ 0} .

Here, we use the notation that L1(µ) is the class of all Lebesgue integrable

functions with respect to the measure µ. Obviously, J(u, v, w) is well-defined

on Liphc .

Our main result is the following

Theorem 1 (Levin’s duality). Let 0 ≤ h ∈ L∞(Rm × Rn) be compactly

supported and f ∈ L1(Rm) and g ∈ L1(Rn) be two probability densities such

that Γh(f, g) 6= ∅. Suppose that c ∈ L1
loc(R

m ×Rn). Then

min
h∈Γh(f,g)

Ic(h) = sup
(u,v,w)∈Liph

c

J(u, v, w).

In [7], the authors prove (under some additional assumptions) that the

supremum on the right is attained by triple of functions.

In the following Section 2, we illustrate the method of this paper by con-

sidering an analogous problem in finite-dimensions. The proof of Theorem 1

is presented in Section 3.

2 Finite-dimensional linear programming

duality

In this section we illustrate the method of this paper by sketching a non-

standard proof of the finite-dimensional linear programming duality. For A ∈
Rm×n, c ∈ Rn, and b ∈ Rm, duality asserts

I∗ := inf
y≥0, AT y=c

b · y = sup
Ax≤b

c · x, (1)

where, of course, x ∈ Rn and y ∈ Rm, cf. [9, Ch. 4]. We understand the

inequalities y ≥ 0 and Ax ≤ b componentwise. We shall take for granted

that the side of the problem with equality constraints (the infimum above)

is (i) feasible and (ii) has sufficient compactness or coercivity properties. For

example, Yε := {0 ≤ y ∈ Rm | b · y + 1
2ε |A

T y − c|2 ≤ I∗} compact and

non-empty for ε > 0 sufficiently small is enough. We do not try to formalize

(ii), but rather point out that it may also be satisfied in various problems of
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interest due, for example, to the presence of additional inequality constraints

such as upper bounds on the components of y. In particular, this would be the

case in the finite-dimensional version of Levin’s duality. The advantage of our

approach to (1) is that, in the presence of sufficient compactness or coercivity,

it generalizes in a straightforward way to infinite-dimensional problems. This

we shall see in the subsequent section, where we give a new (and unconditional)

proof of Levin’s duality, Theorem 1.

The basic idea in our proof of (1) is to relax the equality constraint in

the minimization problem by adding a penalizing quadratic term to the linear

function. That is, we consider the quadratic function

Iε(y) := b · y +
1

2ε
|AT y − c|2,

and minimize Iε over all y such that y ≥ 0. Relaxing a minimization problem

by approximating hard by soft constraints is a fairly standard procedure in

theoretical and numerical optimization, as well as in the calculus of variations,

whether it be to regularize singular problems or simply to extend the class of

admissible competitors (e.g. [1]). In particular, when dealing with constraints

of different kinds, as in the capacity constrained optimal transport problem,

relaxing some of these constraints eventually simplifies the computation of the

Euler–Lagrange equation dramatically, see e.g. Lemma 3 below.

The key observation in our analysis is a duality theorem for the relaxed

problem,

min
y≥0

Iε(y) = max
Ax≤b

Jε(x), (2)

provided that the minimum on the left is attained, and where Jε(x) = c · x−
ε
2 |x|

2. The derivation of the “inf ≥ sup”-inequality is standard: Using y ≥ 0

and b ≥ Ax, we have

Iε(y) ≥ Ax · y +
1

2ε
|AT y − c|2

= c · x+ x ·
(
AT y − c

)
+

1

2ε
|AT y − c|2

= c · x− ε

2
|x|2 +

ε

2
|x+

1

ε

(
AT y − c

)
|2

≥ Jε(x),

and the statement follows upon taking the infimum on the left and the supre-

mum on the right. Moreover, the above inequality turns into an equality for

any pair (yε, xε) with yε ≥ 0, Axε ≤ b,

xε =
1

ε

(
c−AT yε

)
and (b−Axε) · yε = 0. (3)

In particular, if such a pair exists, we must have

min
y≥0

Iε(y) = Iε(yε) = Jε(xε) = max
Ax≤b

Jε(x),
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that is (2) holds. The existence of (yε, xε) with yε ≥ 0, Axε ≤ b, and (3) is

a simple but crucial insight: when compactness or coercivity (ii) implies the

minimum of Iε on the non-negative orthant to be attained by yε we find

0 ≤ ∂Iε

∂yi
(yε) =

(
b+

1

ε
A
(
AT yε − c

))
i

for each i ≤ m, and the derivative vanishes for those i such that yiε > 0. Thus

xε defined as in the first part of (3) satisfies b ≥ Axε, and the second part

of (3) holds as well. Hence, (yε, xε) is dual pair with the desired properties.

This proves (2) under the assumption that the minimum of Iε is attained.

Whether the minimum is attained in this finite-dimensional toy problem

certainly depends on the particular choice of the matrix A and objective b,

and is encoded in our coercivity hypothesis. Notice, however, that existence

of minimizers is obvious when including the “capacity constraint” y ≤ ȳ for

some ȳ ∈ Rm into the problem, which would actually correspond to the

real finite-dimensional analog for the problem considered in this paper. To

keep the discussion in this section as elementary as possible, we simply drop

this capacity constraint and instead invoke (ii) to assume the existence of a

minimizer yε of Iε at this point.

There is a remarkable affine relation (3) between the maximizer xε of Jε

and the minimizer yε of Iε. This relation, however, is not surprising, since

(3) can also be derived as the first order necessary condition for the dual

maximum problem, which is linear in xε since Jε is quadratic, and in which

yε plays the role of the Lagrange multiplier associated with the constraint

Ax ≤ b.
Finally, to obtain (1) from (2) requires the limit ε ↓ 0. Invoking our

compactness assumption (ii) once more, we extract a convergent subsequence

yε → ỹ that we do not relabel. Since the feasible set for the constrained

problem (1) is also feasible for the penalized problem, we have

Iε(yε) = b · yε +
1

2ε
|AT yε − c|2 ≤ inf

y≥0, AT y=c
b · y < +∞ (4)

which is finite by hypothesis (i). The limit ε→ 0 along our subsequence shows

AT ỹ = c, whence ỹ optimizes the constrained problem:

b · ỹ = inf
y≥0, AT y=c

b · y.

Along the same subsequence, from (4) we then deduce

ε|xε|2 =
1

ε
|AT yε − c|2 → 0

and

Jε(xε) = Iε(yε)→ inf
y≥0, AT y=c

b · y

as ε→ 0. Thus

b · ỹ − lim
ε→0

c · xε = lim
ε→0

Iε(yε)− Jε(xε)− ε|xε|2 = 0,

which establishes (1). Notice the subsequence xε need not converge for this

argument, nor do we claim the supremum over x is attained.
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3 Proof of Levin’s duality theorem

Theorem 1 is an immediate consequence of the following two Propositions:

Proposition 1. The hypotheses of Theorem 1 imply

inf
h∈Γh(f,g)

Ic(h) ≥ sup
(u,v,w)∈Liph

c

J(u, v, w). (5)

Proposition 2. The hypotheses of Theorem 1 imply existence of a sequence

{(uε, vε, wε)}ε↓0 in Liphc such that

Ic(h0) = lim
ε↓0

J(uε, vε, wε), (6)

where h0 is a minimizer of the form h0 = hχW .

The first Proposition is easily established:

Proof of Proposition 1. For any coupling h ∈ Γh(f, g) with Ic(h) finite, and

(u, v, w) ∈ Liphc we have

Ic(h) = −〈uf〉 − 〈vg〉+ 〈〈wh〉〉+ 〈〈(c+ u+ v − w)h〉〉+ 〈〈w(h− h)〉〉
≥ J(u, v, w),

where in the first line we have used the marginal constraint on h and in

the second line we applied the definition of Liphc together with the fact that

0 ≤ h ≤ h. Now, the inequality in (5) follows immediately upon taking the

supremum on the right and the infimum on the left.

The remainder of the paper is devoted to the proof of Proposition 2.

We introduce a relaxed version of the optimal transportation problem with

capacity constraints. Let ε > 0 denote a small number. We define the relaxed

transportation cost

Iεc (h) = 〈〈ch〉〉+
1

2ε
‖〈h〉x − f‖22 +

1

2ε
‖〈h〉y − g‖22

using the L2 norms ‖ · ‖2 on Rm and Rn. Notice that Iεc (h0) = Ic(h0).

Furthermore, for (u, v, w) ∈ Liphc such that u and v are both square-integrable,

we consider the functional

Jε(u, v, w) := −〈uf〉 − 〈vg〉+ 〈〈wh〉〉 − ε

2
‖u‖22 −

ε

2
‖v‖22.

We can extend Jε to a functional all over Liphc by setting Jε(u, v, w) := −∞
if u 6∈ L2(Rm) or v 6∈ L2(Rn).

In a first step, we derive the analogous statement to Proposition 1 for the

relaxed problem.
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Lemma 1 (Easy direction of relaxed duality). For ε > 0, the hypotheses of

Theorem 1 imply

inf
0≤h≤h

Iεc (h) ≥ sup
(u,v,w)∈Liph

c

Jε(u, v, w). (7)

Proof. Without lost of generality we may choose 0 ≤ h ≤ h and (u, v, w) ∈
Liphc such that Iεc (h) and Jε(u, v, w) are both finite. A short computation

shows that Iεc (h) can be rewritten as

Iεc (h) = −〈uf〉 − 〈vg〉+ 〈〈wh〉〉 − ε

2
‖u‖22 −

ε

2
‖v‖22

+ 〈〈(c+ u+ v − w)h〉〉+ 〈〈w(h− h)〉〉

+
1

2ε
‖〈h〉x − f − εu‖22 +

1

2ε
‖〈h〉y − g − εv‖22 .

By the definition of Liphc and Jε(u, v, w), recalling that 0 ≤ h ≤ h, and

observing that the term in the last line is trivially nonnegative, it follows that

Iεc (h) ≥ Jε(u, v, w).

Taking the infimum on the left hand side and the supremum on the right hand

side yields (7).

We next address existence of minimizers for the relaxed problem.

Lemma 2 (Existence of minimizers and uniqueness of relaxed marginals).

The hypotheses of Theorem 1 imply existence of a minimizer hε of Iεc , and hε
can be chosen of the form hε = hχWε for some Lebesgue measurable set Wε

in Rm ×Rn. Moreover, if h̃ε is another minimizer of Iεc , then 〈hε〉x = 〈h̃ε〉x
and 〈hε〉y = 〈h̃ε〉y.

Existence of minimizers and uniqueness of their marginals follow by stan-

dard arguments. We provide the proof for the convenience of the reader.

Proof. Since h0 is admissible for Iεc with Iεc (h0) = Ic(h0), it follows that

−‖h‖∞‖c‖L1(W ) ≤ inf Iεc (h) ≤ Ic(h0) <∞, where the infimum is taken over all

admissible h. Let {hν}ν↑∞ denote a minimizing sequence. By the compactly

supported bound 0 ≤ hν ≤ h ∈ L∞, we see hν is bounded in Lp for all

p ≥ 1. The same is true for f and g since Γh(f, g) 6= ∅. Thus we can find

an L∞-function hε satisfying 0 ≤ hε ≤ h and we can extract a subsequence

converging to hε weakly-? in L∞, such that the subsequences {〈hν〉x− f}ν↑∞
and {〈hν〉y−g}ν↑∞ also converge weakly in L2 towards 〈hε〉x−f and 〈hε〉y−g,

respectively. Without relabeling the subsequences, we then have

‖〈hε〉x − f‖2 ≤ lim inf
ν↑∞

‖〈hν〉x − f‖2,

‖〈hε〉y − g‖2 ≤ lim inf
ν↑∞

‖〈hν〉y − g‖2,
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by the lower semi-continuity of the L2 norm with respect to weak L2 con-

vergence. Moreover, since c ∈ L1
loc and hε, hν are supported in W , weak-?

convergence guarantees that

〈〈chε〉〉 = lim
ν↑∞
〈〈chν〉〉.

Hence, by combining the above (in)equalities, we have

Iεc (hε) ≤ lim inf
ν↑∞

Iεc (hν).

Since {hν}ν↑∞ was a minimizing sequence, it turns out that hε minimizes

Iεc . By strict convexity of the relaxed optimization problem, hε has unique

marginals. Moreover, since hε minimizes Ic in the class Γh(〈hε〉x, 〈hε〉y), we

can choose hε geometrically extreme (with respect to h0): hε = hχWε for some

Lebesgue measurable set Wε ⊂W , cf. [6].

In the following, we construct an approximate dual triple (uε, vε, wε) by

defining

uε :=
1

ε
(〈hε〉x − f) , (8)

vε :=
1

ε
(〈hε〉y − g) , (9)

wε := min{c+ uε + vε, 0}. (10)

The definition of wε entails that c + uε + vε − wε ≥ 0 and wε ≤ 0. Observe

that by Lemma 2 these triples are determined independently of the choice of

hε. Notice that uε and vε (but not wε) depend linearly on hε, echoing our

finite dimensional model problem. In Lemma 4 below, we prove that this

triple maximizes Jε in Liphc , which in turn yields the duality theorem for the

relaxed problem. We can pass to the limit ε ↓ 0 in this duality to prove

Proposition 2.

Lemma 3 (Euler–Lagrange equations for relaxed problem). Taking hε and

Wε from Lemma 2, using (8)–(10) to define (uε, vε, wε) yields

c+ uε + vε

{
≤ 0 a.e. in Wε,

≥ 0 a.e. in W \Wε.
(11)

Proof of Lemma 3. Let ζ ≥ 0 denote an arbitrary smooth test function. We

give the argument for the second inequality in (11) by considering the outer

perturbation

hσε := hε + σζ(h− hε) =

{
hε a.e. in Wε,

σζh a.e. in W \Wε.

Obviously h0
ε = hε and 0 ≤ hσε ≤ h for 0 ≤ σ ≤ ‖ζ‖−1

∞ . Hence, by the

optimality of hε we have Iεc (h0
ε) ≤ Iεc (hσε ), and a short computation using

(8)&(9) yields

0 ≤ d

dσ

∣∣∣∣
σ=0

Iεc (hσε ) = 〈〈(c+ uε + vε) ζ(h− hε)〉〉.
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This estimate holds for all smooth test functions ζ ≥ 0. Via the Fundamental

Lemma of Calculus of Variations it immediately follows that (c+ uε + vε) (h−
hε) ≥ 0 almost everywhere. Moreover, since h − hε is nonnegative almost

everywhere and positive almost everywhere in W \Wε, we deduce the second

inequality in (11).

The argument for the first inequality in (11) is proved similarly, we just

need to consider the perturbation hσε := hε − σζhε and argue as above.

Lemma 4 (A duality theorem for the relaxed problem). Taking hε and Wε

from Lemma 2 and using (8)–(10) to define (uε, vε, wε) yields

Iεc (hε) = Jε(uε, vε, wε). (12)

In particular, (uε, vε, wε) maximizes Jε(u, v, w) in Liphc .

Proof. Using the definition of uε and vε, we easily compute that

Jε(uε, vε, wε) = Iεc (hε)− 〈〈(c+ uε + vε − wε)hε〉〉+ 〈〈wε(h− hε)〉〉.

In view of (10) and (11) we see that (c+uε+vε−wε)hε ≡ 0 and wε(h−hε) ≡ 0.

Hence, (12) follows.

In view of (7), the triple (uε, vε, wε) is a maximizer of Jε in Liphc because

(uε, vε, wε) ∈ Liphc by construction.

The next result shows that solutions to the relaxed problem approximate

the original one “as the soft constraints become harder”.

Lemma 5 (Extracting a limit from the penalized problems). The sequence

{hε}ε↓0 defined by Lemma 2 is precompact in the L∞-weak-? topology and

every limit point h0 is a minimizer of Ic. Moreover,

lim
ε↓0

Ic(hε) = Ic(h0), (13)

lim
ε↓0

ε‖uε‖22 = 0, (14)

lim
ε↓0

ε‖vε‖22 = 0. (15)

Proof. Since 0 ≤ hε ≤ h, we immediately see that a subsequence of {hε}ε↓0
(which we will not relabel) converges weakly-? in L∞ to some function 0 ≤
h̃ ≤ h.

By the optimality of hε and since any minimizer h̃0 of the original ε = 0

problem is admissible in the relaxed problem, we have the trivial bound

Iεc (hε) ≤ Iεc (h̃0) = Ic(h̃0), (16)

and thus weak-? convergence of {hε}ε>0 implies that

〈〈ch̃〉〉 = lim
ε↓0
〈〈chε〉〉

(16)

≤ 〈〈ch̃0〉〉,
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i.e., Ic(h̃) ≤ Ic(h̃0). Since 0 ≤ h̃ ≤ h, it remains to show that h̃ satisfies the

marginal constraints

f = 〈h̃〉x and g = 〈h̃〉y,

because then h̃ must be a minimizer of Ic, i.e., Ic(h̃) = Ic(h̃0).

Indeed, from (16) we deduce that

‖f − 〈hε〉x‖22 + ‖g − 〈hε〉y‖22 ≤ 2ε〈〈ch̃0〉〉,

which states that 〈hε〉x → f and 〈hε〉y → g in L2. For any smooth and

compactly supported test function ζ = ζ(x), we write

〈(f − 〈h̃〉x)ζ〉 = 〈(f − 〈hε〉x)ζ〉+ 〈(〈hε〉x − 〈h̃〉x)ζ〉.

The first integral on the right converges to zero by the L2-convergence of the

marginals stated above. The second integral can be rewritten as 〈〈(hε− h̃)ζ〉〉
which converges to zero by L∞-weak-? convergence. Invoking the Funda-

mental Lemma of Calculus of Variations, this proves that f = 〈h̃〉x, and the

analogous argument applies for the y-marginals, showing that g = 〈h̃〉y.

Since Ic(h̃) ≤ lim infε↓0 I
ε
c (hε), passing to the limit in (16), the above

analysis shows that

min
h∈Γh(f,g)

Ic(h) = lim
ε↓0

Ic(hε) = lim
ε↓0

Iεc (hε),

which implies (13)–(15) by the definition of uε and vε.

We are now in the position to prove Proposition 2.

Proof of Proposition 2. We may rewrite identity (12) in terms of J(uε, vε, wε)

and Ic(hε), that is

J(uε, vε, wε) = Ic(hε) + ε‖uε‖22 + ε‖vε‖22.

Invoking (13)–(15), we then have

lim
ε↓0

J(uε, vε, wε) = Ic(h0),

i.e., equation (6). It remains to recall that (uε, vε, wε) ∈ Liphc by Lemma 4.
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