MAT425/1340 DIFFERENTIAL TOPOLOGY, FALL 2016. PROBLEM SET 7.

- You are encouraged to work on the problems with other students.
- You are required to write your solution later, entirely on your own, as if it were a take-home exam.

Due on Wednesday November 16th in class.

(1) (Borsuk Ulam theorem:) Let $f: S^{n-1} \to \mathbb{R}^{n-1}$ be a continuous map. Then there exists $x \in S^{n-1}$ such that f(x) = f(-x).

In class we proved this theorem for maps f that are smooth. Prove it for maps fthat are continuous. (Hint: find a sequence of smooth maps $S^{n-1} \to \mathbb{R}^{n-1}$ that uniformly converges to f.)

(2) A subset of a topological space is of first Baire Category, or meagre, if it is contained in a countable union of closed sets whose interiors are empty. It is called *residual* if its complement is meagre.

Let $f: M \to N$ be a smooth map between manifolds. Show that the set of critical values of f is of first Baire category in N.

(3) Let $f_t \colon M \to N$, for $t \in [0, 1]$, be a proper smooth homotopy. Let $h_t \colon N \to N$, for $t \in [0, 1]$, be a proper smooth homotopy. [0, 1], be a compactly supported smooth family of diffeomorphisms (in other words, an isotopy between the diffeomorphisms h_0 and h_1). Prove that $h_t \circ f_t \colon M \to N$, for $t \in [0,1]$, is a proper smooth homotopy. (Hint: write a composition $[0,1] \times M \rightarrow$ $[0,1] \times N \to N.)$

Solve but don't hand in:

- Fix non-negative integers n and k. Let $\phi: S^{n-1} \to \mathbb{R}^k$ be a continuous map from the unit sphere in \mathbb{R}^n to \mathbb{R}^k . Suppose that $\phi(x) \neq 0$ for all $x \in S^{n-1}$. Show that the following two conditions are equivalent.
 - (1) For every continuous map $F: B^n \to \mathbb{R}^k$ from the closed unit ball in \mathbb{R}^n to \mathbb{R}^k whose restriction to S^{n-1} coincides with ϕ , the equation F(x) = 0 has a solution. (2) The map $\psi := \frac{\phi}{|\phi|} \colon S^{n-1} \to S^{k-1}$ is homotopically non-trivial.
- Let X be a manifold with boundary and $f: X \to \mathbb{R}^n$ a continuous map. Show: -f is proper if and only if $|f|: X \to \mathbb{R}$ is proper.
 - If $g: X \to \mathbb{R}^n$ is proper and $|f(x)| \ge |g(x)|$ for all $x \in X$ then f is proper.
 - If f is proper and A is a subset of \mathbb{R}^n then $f|_{f^{-1}(A)} \colon f^{-1}(A) \to A$ is proper.
 - If C is a closed subset of X and f is proper then $f|_C \colon C \to \mathbb{R}^n$ is proper.
 - If C is a closed subset of X and $f|_C: C \to \mathbb{R}^n$ is proper, and if the complement of C has compact closure in X, then f is proper.