MAT157 – Analysis I, 2018–19. Assignment 4.

Read Chapters 5 and 6 of Spivak's book. Clear solutions to the following problems are due in class on Thursday October 18th.

- (1) Suppose that $f(x) \le g(x) \le h(x)$ for all x and that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} h(x) = \ell$. Prove that $\lim_{x\to\infty} g(x) = \ell$.
- (2) Give one example of a function $f \colon \mathbb{R} \to \mathbb{R}$ that satisfies $\lim_{x \to 2} f(x) = 10$ but that does not satisfy the following condition.
- There exists $\delta > 0$ such that for all $\epsilon > 0$, if $0 < |x 2| < \delta$, then (\star) $|f(x) - 10| < \epsilon.$ Explain.
 - (3) For each $n \in \mathbb{N}$, let A_n be a finite set of numbers. Assume that for each n and m such that $n \neq m$, the sets A_n and A_m are disjoint (do not have any common elements). Define $f(x) = \frac{1}{n}$ if $x \in A_n$; define f(x) = 0 if x is not in A_n for any n.

(a) Prove that
$$\lim_{x \to 7} f(x) = 0$$
.

(b) Why did we require the sets A_n to be disjoint?

(4) (a) Using simpler trigonometric identities prove that, if $t = \tan \frac{x}{2}$, then

(b) Prove that
$$\sin(10x)\sin(x) = \frac{1-t^2}{1+t^2}$$
 and $\sin x = \frac{2t}{1+t^2}$.

- (5) (a) Prove that if $\lim_{x \to 0} f(x) = \ell$ then $\lim_{x \to \infty} f(1/x) = \ell$. (b) Is the converse true? Namely, does $\lim_{x \to \infty} f(1/x) = \ell$ imply that $\lim_{x \to 0} f(x) = \ell$? Why or why not?

Solve the following questions but do not hand in your solutions:

- Spivak Chapter 5 Question 1 parts (i)–(vi) and Question 2. (Find limits.)
- Spivak Chapter 5 Question 3: choose two parts. (Find limits and prove.)
- Spivak Chapter 5 Question 8. (Relations between existence of limits of f, g, f + g.)
- Spivak Chapter 5 Question 10 parts (a)–(c). (Equivalent formulations of limit.)
- Spivak Chapter 5 Question 12. $(f \le g \text{ implies } \lim f \le \lim g.)$
- Spivak Chapter 5 Question 15 (i), (v), (viii). (Limit in terms of $\lim_{x\to 0} \frac{\sin x}{x}$.)
- Spivak Chapter 5 Question 26. ("Bad" definitions of limits.)
- Spivak Chapter 5 Question 38. (Define what it means to diverge to ∞ .)
- Spivak Chapter 5 Question 40. (Perimeter of regular polygon.)