MA157 – ANALYSIS 1, 2020–2021. ASSIGNMENT 1

(1) Consider the golden ratio, $\varphi := \frac{1+\sqrt{5}}{2}$. Consider also $\tau := 2\pi$.

(a) Prove that $1 < \varphi < 2$.

Below, you can use the facts that $1 < \varphi < 2$ and $6 < \tau < 7$, and you may not use any other properties of φ and τ .

- (b) Find a positive number E such that, for all x and y, if $|x-\varphi| < E$ and $|y-\tau| < E$, then $|xy \tau\varphi| < 1$. Write your solution as " $E = \dots$ ".
- (c) Prove that the number E that you found satisfies the required condition.
- (2) True or false? Discuss in one sentence.
 - (a) $u^2 > v^2$ implies u > v.
 - (b) u > v implies $\frac{1}{u} < \frac{1}{v}$.

Here, u and v are arbitrary real numbers.

- (3) For any three distinct real numbers a, b, c, we say that b is **between** a and c if either a < b < c or a > b > c.
 - (a) Prove that for any three distinct real numbers exactly one of them is between the other two.
 - (b) Suppose that a, b, c are distinct and that b is between a and c. Find a real number t such that 0 < t < 1 and b = (1 t)a + tc.
 - (c) Suppose that a, b, c are distinct and that t is a real number such that 0 < t < 1and b = (1 - t)a + tc. Prove that b is between a and c.